"""Warm-starting GLVQ with prototypes from Growing Neural Gas.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from torch.optim.lr_scheduler import ExponentialLR if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Prepare the data train_ds = pt.datasets.Iris(dims=[0, 2]) train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) # Initialize the gng gng = pt.models.GrowingNeuralGas( hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1), prototypes_initializer=pt.initializers.ZCI(2), lr_scheduler=ExponentialLR, lr_scheduler_kwargs=dict(gamma=0.99, verbose=False), ) # Callbacks es = pl.callbacks.EarlyStopping( monitor="loss", min_delta=0.001, patience=20, mode="min", verbose=False, check_on_train_epoch_end=True, ) # Setup trainer for GNG trainer = pl.Trainer( max_epochs=200, callbacks=[es], weights_summary=None, ) # Training loop trainer.fit(gng, train_loader) # Hyperparameters hparams = dict( distribution=[], lr=0.01, ) # Warm-start prototypes knn = pt.models.KNN(dict(k=1), data=train_ds) prototypes = gng.prototypes plabels = knn.predict(prototypes) # Initialize the model model = pt.models.GLVQ( hparams, optimizer=torch.optim.Adam, prototypes_initializer=pt.initializers.LCI(prototypes), labels_initializer=pt.initializers.LLI(plabels), lr_scheduler=ExponentialLR, lr_scheduler_kwargs=dict(gamma=0.99, verbose=False), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Callbacks vis = pt.models.VisGLVQ2D(data=train_ds) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], weights_summary="full", accelerator="ddp", ) # Training loop trainer.fit(model, train_loader)