"""GMLVQ example using the spiral dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256) # Hyperparameters num_classes = 2 prototypes_per_class = 10 hparams = dict( distribution=(num_classes, prototypes_per_class), transfer_function="swish_beta", transfer_beta=10.0, proto_lr=0.1, bb_lr=0.1, input_dim=2, latent_dim=2, ) # Initialize the model model = pt.models.GMLVQ( hparams, optimizer=torch.optim.Adam, prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2), ) # Callbacks vis = pt.models.VisGLVQ2D( train_ds, show_last_only=False, block=False, ) pruning = pt.models.PruneLoserPrototypes( threshold=0.01, idle_epochs=10, prune_quota_per_epoch=5, frequency=5, replace=True, prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1), verbose=True, ) es = pl.callbacks.EarlyStopping( monitor="train_loss", min_delta=1.0, patience=5, mode="min", check_on_train_epoch_end=True, ) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, es, pruning, ], terminate_on_nan=True, ) # Training loop trainer.fit(model, train_loader)