"""GLVQ example using the Iris dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from torch.optim.lr_scheduler import ExponentialLR if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris(dims=[0, 2]) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) # Hyperparameters hparams = dict( distribution={ "num_classes": 3, "per_class": 4 }, lr=0.01, ) # Initialize the model model = pt.models.GLVQ( hparams, optimizer=torch.optim.Adam, prototypes_initializer=pt.initializers.SMCI(train_ds), lr_scheduler=ExponentialLR, lr_scheduler_kwargs=dict(gamma=0.99, verbose=False), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Callbacks vis = pt.models.VisGLVQ2D(data=train_ds) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], weights_summary="full", accelerator="ddp", ) # Training loop trainer.fit(model, train_loader) # Manual save trainer.save_checkpoint("./glvq_iris.ckpt") # Load saved model new_model = pt.models.GLVQ.load_from_checkpoint( checkpoint_path="./glvq_iris.ckpt") print(new_model)