"""RSLVQ example using the Iris dataset.""" import argparse import warnings import prototorch as pt import pytorch_lightning as pl import torch from prototorch.models import RSLVQ, VisGLVQ2D from pytorch_lightning.utilities.seed import seed_everything from pytorch_lightning.utilities.warnings import PossibleUserWarning from torch.utils.data import DataLoader warnings.filterwarnings("ignore", category=PossibleUserWarning) warnings.filterwarnings("ignore", category=UserWarning) if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Reproducibility seed_everything(seed=42) # Dataset train_ds = pt.datasets.Iris(dims=[0, 2]) # Dataloaders train_loader = DataLoader(train_ds, batch_size=64) # Hyperparameters hparams = dict( distribution=[2, 2, 3], proto_lr=0.05, lambd=0.1, variance=1.0, input_dim=2, latent_dim=2, bb_lr=0.01, ) # Initialize the model model = RSLVQ( hparams, optimizer=torch.optim.Adam, prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Callbacks vis = VisGLVQ2D(data=train_ds) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, ], detect_anomaly=True, max_epochs=100, log_every_n_steps=1, ) # Training loop trainer.fit(model, train_loader)