"""GTLVQ example using the MNIST dataset.""" import argparse import warnings import prototorch as pt import pytorch_lightning as pl import torch from prototorch.models import ( ImageGTLVQ, PruneLoserPrototypes, VisImgComp, ) from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.utilities.seed import seed_everything from pytorch_lightning.utilities.warnings import PossibleUserWarning from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import MNIST warnings.filterwarnings("ignore", category=PossibleUserWarning) warnings.filterwarnings("ignore", category=UserWarning) if __name__ == "__main__": # Reproducibility seed_everything(seed=4) # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = MNIST( "~/datasets", train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), ]), ) test_ds = MNIST( "~/datasets", train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), ]), ) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=256) test_loader = DataLoader(test_ds, num_workers=0, batch_size=256) # Hyperparameters num_classes = 10 prototypes_per_class = 1 hparams = dict( input_dim=28 * 28, latent_dim=28, distribution=(num_classes, prototypes_per_class), proto_lr=0.01, bb_lr=0.01, ) # Initialize the model model = ImageGTLVQ( hparams, optimizer=torch.optim.Adam, prototypes_initializer=pt.initializers.SMCI(train_ds), #Use one batch of data for subspace initiator. omega_initializer=pt.initializers.PCALinearTransformInitializer( next(iter(train_loader))[0].reshape(256, 28 * 28))) # Callbacks vis = VisImgComp( data=train_ds, num_columns=10, show=False, tensorboard=True, random_data=100, add_embedding=True, embedding_data=200, flatten_data=False, ) pruning = PruneLoserPrototypes( threshold=0.01, idle_epochs=1, prune_quota_per_epoch=10, frequency=1, verbose=True, ) es = EarlyStopping( monitor="train_loss", min_delta=0.001, patience=15, mode="min", check_on_train_epoch_end=True, ) # Setup trainer # using GPUs here is strongly recommended! trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, pruning, es, ], max_epochs=1000, log_every_n_steps=1, detect_anomaly=True, ) # Training loop trainer.fit(model, train_loader)