"""Growing Neural Gas example using the Iris dataset.""" import argparse import logging import warnings import prototorch as pt import pytorch_lightning as pl import torch from prototorch.models import GrowingNeuralGas, VisNG2D from pytorch_lightning.utilities.seed import seed_everything from pytorch_lightning.utilities.warnings import PossibleUserWarning from torch.utils.data import DataLoader warnings.filterwarnings("ignore", category=PossibleUserWarning) warnings.filterwarnings("ignore", category=UserWarning) if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Reproducibility seed_everything(seed=42) # Prepare the data train_ds = pt.datasets.Iris(dims=[0, 2]) train_loader = DataLoader(train_ds, batch_size=64) # Hyperparameters hparams = dict( num_prototypes=5, input_dim=2, lr=0.1, ) # Initialize the model model = GrowingNeuralGas( hparams, prototypes_initializer=pt.initializers.ZCI(2), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Model summary logging.info(model) # Callbacks vis = VisNG2D(data=train_loader) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, ], max_epochs=100, log_every_n_steps=1, detect_anomaly=True, ) # Training loop trainer.fit(model, train_loader)