"""k-NN example using the Iris dataset.""" import argparse import pytorch_lightning as pl import torch from sklearn.datasets import load_iris import prototorch as pt if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] train_ds = pt.datasets.NumpyDataset(x_train, y_train) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) # Hyperparameters hparams = dict(k=20) # Initialize the model model = pt.models.KNN(hparams, data=train_ds) # Callbacks vis = pt.models.VisGLVQ2D(data=(x_train, y_train), resolution=200) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], ) # Training loop # This is only for visualization. k-NN has no training phase. trainer.fit(model, train_loader) # Recall y_pred = model.predict(torch.tensor(x_train)) print(y_pred)