""" Proto Y Architecture Network architecture for Component based Learning. """ from __future__ import annotations from dataclasses import asdict, dataclass from typing import Any, Callable import pytorch_lightning as pl import torch from torchmetrics import Metric class BaseYArchitecture(pl.LightningModule): @dataclass class HyperParameters: ... # Fields registered_metrics: dict[type[Metric], Metric] = {} registered_metric_callbacks: dict[type[Metric], set[Callable]] = {} # Type Hints for Necessary Fields components_layer: torch.nn.Module def __init__(self, hparams) -> None: if type(hparams) is dict: self.save_hyperparameters(hparams) # TODO: => Move into Component Child del hparams["initialized_proto_shape"] hparams = self.HyperParameters(**hparams) else: hparam_dict = asdict(hparams) hparam_dict["component_initializer"] = None self.save_hyperparameters(hparam_dict, ) super().__init__() # Common Steps self.init_components(hparams) self.init_latent(hparams) self.init_comparison(hparams) self.init_competition(hparams) # Train Steps self.init_loss(hparams) # Inference Steps self.init_inference(hparams) # external API def get_competition(self, batch, components): latent_batch, latent_components = self.latent(batch, components) # TODO: => Latent Hook comparison_tensor = self.comparison(latent_batch, latent_components) # TODO: => Comparison Hook return comparison_tensor def forward(self, batch): if isinstance(batch, torch.Tensor): batch = (batch, None) # TODO: manage different datatypes? components = self.components_layer() # TODO: => Component Hook comparison_tensor = self.get_competition(batch, components) # TODO: => Competition Hook return self.inference(comparison_tensor, components) def predict(self, batch): """ Alias for forward """ return self.forward(batch) def forward_comparison(self, batch): if isinstance(batch, torch.Tensor): batch = (batch, None) # TODO: manage different datatypes? components = self.components_layer() # TODO: => Component Hook return self.get_competition(batch, components) def loss_forward(self, batch): # TODO: manage different datatypes? components = self.components_layer() # TODO: => Component Hook comparison_tensor = self.get_competition(batch, components) # TODO: => Competition Hook return self.loss(comparison_tensor, batch, components) # Empty Initialization # TODO: Docs def init_components(self, hparams: HyperParameters) -> None: ... def init_latent(self, hparams: HyperParameters) -> None: ... def init_comparison(self, hparams: HyperParameters) -> None: ... def init_competition(self, hparams: HyperParameters) -> None: ... def init_loss(self, hparams: HyperParameters) -> None: ... def init_inference(self, hparams: HyperParameters) -> None: ... # Empty Steps # TODO: Type hints def components(self): """ This step has no input. It returns the components. """ raise NotImplementedError( "The components step has no reasonable default.") def latent(self, batch, components): """ The latent step receives the data batch and the components. It can transform both by an arbitrary function. It returns the transformed batch and components, each of the same length as the original input. """ return batch, components def comparison(self, batch, components): """ Takes a batch of size N and the component set of size M. It returns an NxMxD tensor containing D (usually 1) pairwise comparison measures. """ raise NotImplementedError( "The comparison step has no reasonable default.") def competition(self, comparison_measures, components): """ Takes the tensor of comparison measures. Assigns a competition vector to each class. """ raise NotImplementedError( "The competition step has no reasonable default.") def loss(self, comparison_measures, batch, components): """ Takes the tensor of competition measures. Calculates a single loss value """ raise NotImplementedError("The loss step has no reasonable default.") def inference(self, comparison_measures, components): """ Takes the tensor of competition measures. Returns the inferred vector. """ raise NotImplementedError( "The inference step has no reasonable default.") # Y Architecture Hooks # internal API, called by models and callbacks def register_torchmetric( self, name: Callable, metric: type[Metric], **metric_kwargs, ): if metric not in self.registered_metrics: self.registered_metrics[metric] = metric(**metric_kwargs) self.registered_metric_callbacks[metric] = {name} else: self.registered_metric_callbacks[metric].add(name) def update_metrics_step(self, batch): # Prediction Metrics preds = self(batch) x, y = batch for metric in self.registered_metrics: instance = self.registered_metrics[metric].to(self.device) instance(y, preds) def update_metrics_epoch(self): for metric in self.registered_metrics: instance = self.registered_metrics[metric].to(self.device) value = instance.compute() for callback in self.registered_metric_callbacks[metric]: callback(value, self) instance.reset() # Lightning Hooks # Steps def training_step(self, batch, batch_idx, optimizer_idx=None): self.update_metrics_step([torch.clone(el) for el in batch]) return self.loss_forward(batch) def validation_step(self, batch, batch_idx): return self.loss_forward(batch) def test_step(self, batch, batch_idx): return self.loss_forward(batch) # Other Hooks def training_epoch_end(self, outs) -> None: self.update_metrics_epoch() def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None: checkpoint["hyper_parameters"] = { 'hparams': checkpoint["hyper_parameters"] } return super().on_save_checkpoint(checkpoint)