Compare commits
50 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
d6629c8792 | ||
|
ef65bd3789 | ||
|
d096eba2c9 | ||
|
dd34c57e2e | ||
|
5911f4dd90 | ||
|
dbfe315f4f | ||
|
9c90c902dc | ||
|
7d3f59e54b | ||
|
9da47b1dba | ||
|
41f0e77fc9 | ||
|
fab786a07e | ||
|
40bd7ed380 | ||
|
4941c2b89d | ||
|
ce14dec7e9 | ||
|
b31c8cc707 | ||
|
e21e6c7e02 | ||
|
dd696ea1e0 | ||
|
15e7232747 | ||
|
197b728c63 | ||
|
98892afee0 | ||
|
d5855dbe97 | ||
|
75a39f5b03 | ||
|
1a0e697b27 | ||
|
1a17193b35 | ||
|
aaa3c51e0a | ||
|
62c5974a85 | ||
|
1d26226a2f | ||
|
4232d0ed2a | ||
|
a9edf06507 | ||
|
d3bb430104 | ||
|
6ffd27d12a | ||
|
859e2cae69 | ||
|
d7ea89d47e | ||
|
fa928afe2c | ||
|
7d4a041df2 | ||
|
04c51c00c6 | ||
|
62185b38cf | ||
|
7b93cd4ad5 | ||
|
d7834e2cc0 | ||
|
0af8cf36f8 | ||
|
f8ad1d83eb | ||
|
23a3683860 | ||
|
4be9fb81eb | ||
|
9d38123114 | ||
|
0f9f24e36a | ||
|
09e3ef1d0e | ||
|
7b9b767113 | ||
|
f56ec44afe | ||
|
67a20124e8 | ||
|
72af03b991 |
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.2.0
|
current_version = 0.5.0
|
||||||
commit = True
|
commit = True
|
||||||
tag = True
|
tag = True
|
||||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||||
|
15
.codacy.yml
15
.codacy.yml
@@ -1,15 +0,0 @@
|
|||||||
# To validate the contents of your configuration file
|
|
||||||
# run the following command in the folder where the configuration file is located:
|
|
||||||
# codacy-analysis-cli validate-configuration --directory `pwd`
|
|
||||||
# To analyse, run:
|
|
||||||
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
|
|
||||||
---
|
|
||||||
engines:
|
|
||||||
pylintpython3:
|
|
||||||
exclude_paths:
|
|
||||||
- config/engines.yml
|
|
||||||
remark-lint:
|
|
||||||
exclude_paths:
|
|
||||||
- config/engines.yml
|
|
||||||
exclude_paths:
|
|
||||||
- 'tests/**'
|
|
@@ -1,2 +0,0 @@
|
|||||||
comment:
|
|
||||||
require_changes: yes
|
|
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
---
|
||||||
|
name: Bug report
|
||||||
|
about: Create a report to help us improve
|
||||||
|
title: ''
|
||||||
|
labels: ''
|
||||||
|
assignees: ''
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Describe the bug**
|
||||||
|
A clear and concise description of what the bug is.
|
||||||
|
|
||||||
|
**Steps to reproduce the behavior**
|
||||||
|
1. ...
|
||||||
|
2. Run script '...' or this snippet:
|
||||||
|
```python
|
||||||
|
import prototorch as pt
|
||||||
|
|
||||||
|
...
|
||||||
|
```
|
||||||
|
3. See errors
|
||||||
|
|
||||||
|
**Expected behavior**
|
||||||
|
A clear and concise description of what you expected to happen.
|
||||||
|
|
||||||
|
**Observed behavior**
|
||||||
|
A clear and concise description of what actually happened.
|
||||||
|
|
||||||
|
**Screenshots**
|
||||||
|
If applicable, add screenshots to help explain your problem.
|
||||||
|
|
||||||
|
**System and version information**
|
||||||
|
- OS: [e.g. Ubuntu 20.10]
|
||||||
|
- ProtoTorch Version: [e.g. 0.4.0]
|
||||||
|
- Python Version: [e.g. 3.9.5]
|
||||||
|
|
||||||
|
**Additional context**
|
||||||
|
Add any other context about the problem here.
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
---
|
||||||
|
name: Feature request
|
||||||
|
about: Suggest an idea for this project
|
||||||
|
title: ''
|
||||||
|
labels: ''
|
||||||
|
assignees: ''
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Is your feature request related to a problem? Please describe.**
|
||||||
|
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||||
|
|
||||||
|
**Describe the solution you'd like**
|
||||||
|
A clear and concise description of what you want to happen.
|
||||||
|
|
||||||
|
**Describe alternatives you've considered**
|
||||||
|
A clear and concise description of any alternative solutions or features you've considered.
|
||||||
|
|
||||||
|
**Additional context**
|
||||||
|
Add any other context or screenshots about the feature request here.
|
25
.github/workflows/examples.yml
vendored
Normal file
25
.github/workflows/examples.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||||
|
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||||
|
|
||||||
|
name: examples
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
paths:
|
||||||
|
- 'examples/**.py'
|
||||||
|
jobs:
|
||||||
|
cpu:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python 3.10
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: "3.10"
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install .[all]
|
||||||
|
- name: Run examples
|
||||||
|
run: |
|
||||||
|
./tests/test_examples.sh examples/
|
75
.github/workflows/pythonapp.yml
vendored
Normal file
75
.github/workflows/pythonapp.yml
vendored
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
||||||
|
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||||
|
|
||||||
|
name: tests
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
pull_request:
|
||||||
|
branches: [ master ]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
style:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python 3.10
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: "3.10"
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install .[all]
|
||||||
|
- uses: pre-commit/action@v2.0.3
|
||||||
|
compatibility:
|
||||||
|
needs: style
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
python-version: ["3.7", "3.8", "3.9", "3.10"]
|
||||||
|
os: [ubuntu-latest, windows-latest]
|
||||||
|
exclude:
|
||||||
|
- os: windows-latest
|
||||||
|
python-version: "3.7"
|
||||||
|
- os: windows-latest
|
||||||
|
python-version: "3.8"
|
||||||
|
- os: windows-latest
|
||||||
|
python-version: "3.9"
|
||||||
|
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install .[all]
|
||||||
|
- name: Test with pytest
|
||||||
|
run: |
|
||||||
|
pytest
|
||||||
|
publish_pypi:
|
||||||
|
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
|
||||||
|
needs: compatibility
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python 3.10
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: "3.10"
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install .[all]
|
||||||
|
pip install wheel
|
||||||
|
- name: Build package
|
||||||
|
run: python setup.py sdist bdist_wheel
|
||||||
|
- name: Publish a Python distribution to PyPI
|
||||||
|
uses: pypa/gh-action-pypi-publish@release/v1
|
||||||
|
with:
|
||||||
|
user: __token__
|
||||||
|
password: ${{ secrets.PYPI_API_TOKEN }}
|
@@ -3,7 +3,7 @@
|
|||||||
|
|
||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
rev: v4.0.1
|
rev: v4.1.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: trailing-whitespace
|
- id: trailing-whitespace
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
@@ -18,19 +18,19 @@ repos:
|
|||||||
- id: autoflake
|
- id: autoflake
|
||||||
|
|
||||||
- repo: http://github.com/PyCQA/isort
|
- repo: http://github.com/PyCQA/isort
|
||||||
rev: 5.8.0
|
rev: 5.10.1
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: isort
|
||||||
|
|
||||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||||
rev: v0.902
|
rev: v0.931
|
||||||
hooks:
|
hooks:
|
||||||
- id: mypy
|
- id: mypy
|
||||||
files: prototorch
|
files: prototorch
|
||||||
additional_dependencies: [types-pkg_resources]
|
additional_dependencies: [types-pkg_resources]
|
||||||
|
|
||||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||||
rev: v0.31.0
|
rev: v0.32.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: yapf
|
- id: yapf
|
||||||
|
|
||||||
@@ -42,7 +42,7 @@ repos:
|
|||||||
- id: python-check-blanket-noqa
|
- id: python-check-blanket-noqa
|
||||||
|
|
||||||
- repo: https://github.com/asottile/pyupgrade
|
- repo: https://github.com/asottile/pyupgrade
|
||||||
rev: v2.19.4
|
rev: v2.31.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: pyupgrade
|
- id: pyupgrade
|
||||||
|
|
||||||
|
25
.travis.yml
25
.travis.yml
@@ -1,25 +0,0 @@
|
|||||||
dist: bionic
|
|
||||||
sudo: false
|
|
||||||
language: python
|
|
||||||
python: 3.9
|
|
||||||
cache:
|
|
||||||
directories:
|
|
||||||
- "$HOME/.cache/pip"
|
|
||||||
- "./tests/artifacts"
|
|
||||||
- "$HOME/datasets"
|
|
||||||
install:
|
|
||||||
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
|
|
||||||
- pip install .[all] --progress-bar off
|
|
||||||
script:
|
|
||||||
- coverage run -m pytest
|
|
||||||
- ./tests/test_examples.sh examples/
|
|
||||||
after_success:
|
|
||||||
- bash <(curl -s https://codecov.io/bash)
|
|
||||||
deploy:
|
|
||||||
provider: pypi
|
|
||||||
username: __token__
|
|
||||||
password:
|
|
||||||
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
|
|
||||||
on:
|
|
||||||
tags: true
|
|
||||||
skip_existing: true
|
|
@@ -1,6 +1,5 @@
|
|||||||
# ProtoTorch Models
|
# ProtoTorch Models
|
||||||
|
|
||||||
[](https://travis-ci.com/github/si-cim/prototorch_models)
|
|
||||||
[](https://github.com/si-cim/prototorch_models/releases)
|
[](https://github.com/si-cim/prototorch_models/releases)
|
||||||
[](https://pypi.org/project/prototorch_models/)
|
[](https://pypi.org/project/prototorch_models/)
|
||||||
[](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)
|
[](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)
|
||||||
@@ -36,6 +35,7 @@ be available for use in your Python environment as `prototorch.models`.
|
|||||||
- Soft Learning Vector Quantization (SLVQ)
|
- Soft Learning Vector Quantization (SLVQ)
|
||||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||||
- Probabilistic Learning Vector Quantization (PLVQ)
|
- Probabilistic Learning Vector Quantization (PLVQ)
|
||||||
|
- Median-LVQ
|
||||||
|
|
||||||
### Other
|
### Other
|
||||||
|
|
||||||
@@ -51,7 +51,6 @@ be available for use in your Python environment as `prototorch.models`.
|
|||||||
|
|
||||||
## Planned models
|
## Planned models
|
||||||
|
|
||||||
- Median-LVQ
|
|
||||||
- Generalized Tangent Learning Vector Quantization (GTLVQ)
|
- Generalized Tangent Learning Vector Quantization (GTLVQ)
|
||||||
- Self-Incremental Learning Vector Quantization (SILVQ)
|
- Self-Incremental Learning Vector Quantization (SILVQ)
|
||||||
|
|
||||||
|
@@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
|||||||
|
|
||||||
# The full version, including alpha/beta/rc tags
|
# The full version, including alpha/beta/rc tags
|
||||||
#
|
#
|
||||||
release = "0.2.0"
|
release = "0.5.0"
|
||||||
|
|
||||||
# -- General configuration ---------------------------------------------------
|
# -- General configuration ---------------------------------------------------
|
||||||
|
|
||||||
|
File diff suppressed because one or more lines are too long
@@ -1,8 +0,0 @@
|
|||||||
# Examples using Lightning CLI
|
|
||||||
|
|
||||||
Examples in this folder use the experimental [Lightning CLI](https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_cli.html).
|
|
||||||
|
|
||||||
To use the example run
|
|
||||||
```
|
|
||||||
python gmlvq.py --config gmlvq.yaml
|
|
||||||
```
|
|
@@ -1,20 +0,0 @@
|
|||||||
"""GMLVQ example using the MNIST dataset."""
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from pytorch_lightning.utilities.cli import LightningCLI
|
|
||||||
|
|
||||||
import prototorch as pt
|
|
||||||
from prototorch.models import ImageGMLVQ
|
|
||||||
from prototorch.models.abstract import PrototypeModel
|
|
||||||
from prototorch.models.data import MNISTDataModule
|
|
||||||
|
|
||||||
|
|
||||||
class ExperimentClass(ImageGMLVQ):
|
|
||||||
def __init__(self, hparams, **kwargs):
|
|
||||||
super().__init__(hparams,
|
|
||||||
optimizer=torch.optim.Adam,
|
|
||||||
prototype_initializer=pt.components.zeros(28 * 28),
|
|
||||||
**kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
cli = LightningCLI(ImageGMLVQ, MNISTDataModule)
|
|
@@ -1,11 +0,0 @@
|
|||||||
model:
|
|
||||||
hparams:
|
|
||||||
input_dim: 784
|
|
||||||
latent_dim: 784
|
|
||||||
distribution:
|
|
||||||
num_classes: 10
|
|
||||||
prototypes_per_class: 2
|
|
||||||
proto_lr: 0.01
|
|
||||||
bb_lr: 0.01
|
|
||||||
data:
|
|
||||||
batch_size: 32
|
|
@@ -53,3 +53,13 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# Training loop
|
# Training loop
|
||||||
trainer.fit(model, train_loader)
|
trainer.fit(model, train_loader)
|
||||||
|
|
||||||
|
# Manual save
|
||||||
|
trainer.save_checkpoint("./glvq_iris.ckpt")
|
||||||
|
|
||||||
|
# Load saved model
|
||||||
|
new_model = pt.models.GLVQ.load_from_checkpoint(
|
||||||
|
checkpoint_path="./glvq_iris.ckpt",
|
||||||
|
strict=False,
|
||||||
|
)
|
||||||
|
print(new_model)
|
||||||
|
58
examples/gmlvq_iris.py
Normal file
58
examples/gmlvq_iris.py
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
"""GMLVQ example using the Iris dataset."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from torch.optim.lr_scheduler import ExponentialLR
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
train_ds = pt.datasets.Iris()
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
input_dim=4,
|
||||||
|
latent_dim=4,
|
||||||
|
distribution={
|
||||||
|
"num_classes": 3,
|
||||||
|
"per_class": 2
|
||||||
|
},
|
||||||
|
proto_lr=0.01,
|
||||||
|
bb_lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.GMLVQ(
|
||||||
|
hparams,
|
||||||
|
optimizer=torch.optim.Adam,
|
||||||
|
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||||
|
lr_scheduler=ExponentialLR,
|
||||||
|
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Compute intermediate input and output sizes
|
||||||
|
model.example_input_array = torch.zeros(4, 4)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisGMLVQ2D(data=train_ds)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
callbacks=[vis],
|
||||||
|
weights_summary="full",
|
||||||
|
accelerator="ddp",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@@ -1,4 +1,4 @@
|
|||||||
"""GLVQ example using the spiral dataset."""
|
"""GMLVQ example using the spiral dataset."""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
@@ -66,7 +66,7 @@ if __name__ == "__main__":
|
|||||||
args,
|
args,
|
||||||
callbacks=[
|
callbacks=[
|
||||||
vis,
|
vis,
|
||||||
# es, # FIXME
|
es,
|
||||||
pruning,
|
pruning,
|
||||||
],
|
],
|
||||||
terminate_on_nan=True,
|
terminate_on_nan=True,
|
104
examples/gtlvq_mnist.py
Normal file
104
examples/gtlvq_mnist.py
Normal file
@@ -0,0 +1,104 @@
|
|||||||
|
"""GTLVQ example using the MNIST dataset."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from torchvision import transforms
|
||||||
|
from torchvision.datasets import MNIST
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
train_ds = MNIST(
|
||||||
|
"~/datasets",
|
||||||
|
train=True,
|
||||||
|
download=True,
|
||||||
|
transform=transforms.Compose([
|
||||||
|
transforms.ToTensor(),
|
||||||
|
]),
|
||||||
|
)
|
||||||
|
test_ds = MNIST(
|
||||||
|
"~/datasets",
|
||||||
|
train=False,
|
||||||
|
download=True,
|
||||||
|
transform=transforms.Compose([
|
||||||
|
transforms.ToTensor(),
|
||||||
|
]),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||||
|
num_workers=0,
|
||||||
|
batch_size=256)
|
||||||
|
test_loader = torch.utils.data.DataLoader(test_ds,
|
||||||
|
num_workers=0,
|
||||||
|
batch_size=256)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
num_classes = 10
|
||||||
|
prototypes_per_class = 1
|
||||||
|
hparams = dict(
|
||||||
|
input_dim=28 * 28,
|
||||||
|
latent_dim=28,
|
||||||
|
distribution=(num_classes, prototypes_per_class),
|
||||||
|
proto_lr=0.01,
|
||||||
|
bb_lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.ImageGTLVQ(
|
||||||
|
hparams,
|
||||||
|
optimizer=torch.optim.Adam,
|
||||||
|
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||||
|
#Use one batch of data for subspace initiator.
|
||||||
|
omega_initializer=pt.initializers.PCALinearTransformInitializer(
|
||||||
|
next(iter(train_loader))[0].reshape(256, 28 * 28)))
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisImgComp(
|
||||||
|
data=train_ds,
|
||||||
|
num_columns=10,
|
||||||
|
show=False,
|
||||||
|
tensorboard=True,
|
||||||
|
random_data=100,
|
||||||
|
add_embedding=True,
|
||||||
|
embedding_data=200,
|
||||||
|
flatten_data=False,
|
||||||
|
)
|
||||||
|
pruning = pt.models.PruneLoserPrototypes(
|
||||||
|
threshold=0.01,
|
||||||
|
idle_epochs=1,
|
||||||
|
prune_quota_per_epoch=10,
|
||||||
|
frequency=1,
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
es = pl.callbacks.EarlyStopping(
|
||||||
|
monitor="train_loss",
|
||||||
|
min_delta=0.001,
|
||||||
|
patience=15,
|
||||||
|
mode="min",
|
||||||
|
check_on_train_epoch_end=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
# using GPUs here is strongly recommended!
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
callbacks=[
|
||||||
|
vis,
|
||||||
|
pruning,
|
||||||
|
# es,
|
||||||
|
],
|
||||||
|
terminate_on_nan=True,
|
||||||
|
weights_summary=None,
|
||||||
|
accelerator="ddp",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
63
examples/gtlvq_moons.py
Normal file
63
examples/gtlvq_moons.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
"""Localized-GTLVQ example using the Moons dataset."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Reproducibility
|
||||||
|
pl.utilities.seed.seed_everything(seed=2)
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||||
|
batch_size=256,
|
||||||
|
shuffle=True)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
# Latent_dim should be lower than input dim.
|
||||||
|
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.GTLVQ(
|
||||||
|
hparams, prototypes_initializer=pt.initializers.SMCI(train_ds))
|
||||||
|
|
||||||
|
# Compute intermediate input and output sizes
|
||||||
|
model.example_input_array = torch.zeros(4, 2)
|
||||||
|
|
||||||
|
# Summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||||
|
es = pl.callbacks.EarlyStopping(
|
||||||
|
monitor="train_acc",
|
||||||
|
min_delta=0.001,
|
||||||
|
patience=20,
|
||||||
|
mode="max",
|
||||||
|
verbose=False,
|
||||||
|
check_on_train_epoch_end=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
callbacks=[
|
||||||
|
vis,
|
||||||
|
es,
|
||||||
|
],
|
||||||
|
weights_summary="full",
|
||||||
|
accelerator="ddp",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@@ -2,11 +2,11 @@
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
from sklearn.datasets import load_iris
|
from sklearn.datasets import load_iris
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
import prototorch as pt
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Command-line arguments
|
# Command-line arguments
|
||||||
@@ -15,12 +15,20 @@ if __name__ == "__main__":
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Dataset
|
# Dataset
|
||||||
x_train, y_train = load_iris(return_X_y=True)
|
X, y = load_iris(return_X_y=True)
|
||||||
x_train = x_train[:, [0, 2]]
|
X = X[:, [0, 2]]
|
||||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X,
|
||||||
|
y,
|
||||||
|
test_size=0.5,
|
||||||
|
random_state=42)
|
||||||
|
|
||||||
|
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
|
||||||
|
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
|
||||||
|
|
||||||
# Dataloaders
|
# Dataloaders
|
||||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
|
||||||
|
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
|
||||||
|
|
||||||
# Hyperparameters
|
# Hyperparameters
|
||||||
hparams = dict(k=5)
|
hparams = dict(k=5)
|
||||||
@@ -36,7 +44,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# Callbacks
|
# Callbacks
|
||||||
vis = pt.models.VisGLVQ2D(
|
vis = pt.models.VisGLVQ2D(
|
||||||
data=(x_train, y_train),
|
data=(X_train, y_train),
|
||||||
resolution=200,
|
resolution=200,
|
||||||
block=True,
|
block=True,
|
||||||
)
|
)
|
||||||
@@ -54,5 +62,8 @@ if __name__ == "__main__":
|
|||||||
trainer.fit(model, train_loader)
|
trainer.fit(model, train_loader)
|
||||||
|
|
||||||
# Recall
|
# Recall
|
||||||
y_pred = model.predict(torch.tensor(x_train))
|
y_pred = model.predict(torch.tensor(X_train))
|
||||||
print(y_pred)
|
print(y_pred)
|
||||||
|
|
||||||
|
# Test
|
||||||
|
trainer.test(model, dataloaders=test_loader)
|
||||||
|
@@ -10,6 +10,7 @@ from prototorch.utils.colors import hex_to_rgb
|
|||||||
|
|
||||||
|
|
||||||
class Vis2DColorSOM(pl.Callback):
|
class Vis2DColorSOM(pl.Callback):
|
||||||
|
|
||||||
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.title = title
|
self.title = title
|
||||||
|
@@ -8,6 +8,7 @@ import torch
|
|||||||
|
|
||||||
|
|
||||||
class Backbone(torch.nn.Module):
|
class Backbone(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
|
52
examples/median_lvq_iris.py
Normal file
52
examples/median_lvq_iris.py
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
"""Median-LVQ example using the Iris dataset."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(
|
||||||
|
train_ds,
|
||||||
|
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.MedianLVQ(
|
||||||
|
hparams=dict(distribution=(3, 2), lr=0.01),
|
||||||
|
prototypes_initializer=pt.initializers.SSCI(train_ds),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Compute intermediate input and output sizes
|
||||||
|
model.example_input_array = torch.zeros(4, 2)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||||
|
es = pl.callbacks.EarlyStopping(
|
||||||
|
monitor="train_acc",
|
||||||
|
min_delta=0.01,
|
||||||
|
patience=5,
|
||||||
|
mode="max",
|
||||||
|
verbose=True,
|
||||||
|
check_on_train_epoch_end=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
callbacks=[vis, es],
|
||||||
|
weights_summary="full",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@@ -8,6 +8,7 @@ import torch
|
|||||||
|
|
||||||
|
|
||||||
class Backbone(torch.nn.Module):
|
class Backbone(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
|
73
examples/siamese_gtlvq_iris.py
Normal file
73
examples/siamese_gtlvq_iris.py
Normal file
@@ -0,0 +1,73 @@
|
|||||||
|
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class Backbone(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||||
|
super().__init__()
|
||||||
|
self.input_size = input_size
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.latent_size = latent_size
|
||||||
|
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||||
|
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||||
|
self.activation = torch.nn.Sigmoid()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.activation(self.dense1(x))
|
||||||
|
out = self.activation(self.dense2(x))
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
train_ds = pt.datasets.Iris()
|
||||||
|
|
||||||
|
# Reproducibility
|
||||||
|
pl.utilities.seed.seed_everything(seed=2)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(distribution=[1, 2, 3],
|
||||||
|
proto_lr=0.01,
|
||||||
|
bb_lr=0.01,
|
||||||
|
input_dim=2,
|
||||||
|
latent_dim=1)
|
||||||
|
|
||||||
|
# Initialize the backbone
|
||||||
|
backbone = Backbone(latent_size=hparams["input_dim"])
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.SiameseGTLVQ(
|
||||||
|
hparams,
|
||||||
|
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||||
|
backbone=backbone,
|
||||||
|
both_path_gradients=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Model summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
callbacks=[vis],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@@ -37,7 +37,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# Setup trainer for GNG
|
# Setup trainer for GNG
|
||||||
trainer = pl.Trainer(
|
trainer = pl.Trainer(
|
||||||
max_epochs=200,
|
max_epochs=100,
|
||||||
callbacks=[es],
|
callbacks=[es],
|
||||||
weights_summary=None,
|
weights_summary=None,
|
||||||
)
|
)
|
||||||
@@ -71,11 +71,30 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# Callbacks
|
# Callbacks
|
||||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||||
|
pruning = pt.models.PruneLoserPrototypes(
|
||||||
|
threshold=0.02,
|
||||||
|
idle_epochs=2,
|
||||||
|
prune_quota_per_epoch=5,
|
||||||
|
frequency=1,
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
es = pl.callbacks.EarlyStopping(
|
||||||
|
monitor="train_loss",
|
||||||
|
min_delta=0.001,
|
||||||
|
patience=10,
|
||||||
|
mode="min",
|
||||||
|
verbose=True,
|
||||||
|
check_on_train_epoch_end=True,
|
||||||
|
)
|
||||||
|
|
||||||
# Setup trainer
|
# Setup trainer
|
||||||
trainer = pl.Trainer.from_argparse_args(
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
args,
|
args,
|
||||||
callbacks=[vis],
|
callbacks=[
|
||||||
|
vis,
|
||||||
|
pruning,
|
||||||
|
es,
|
||||||
|
],
|
||||||
weights_summary="full",
|
weights_summary="full",
|
||||||
accelerator="ddp",
|
accelerator="ddp",
|
||||||
)
|
)
|
||||||
|
@@ -1,7 +1,5 @@
|
|||||||
"""`models` plugin for the `prototorch` package."""
|
"""`models` plugin for the `prototorch` package."""
|
||||||
|
|
||||||
from importlib.metadata import PackageNotFoundError, version
|
|
||||||
|
|
||||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
||||||
from .cbc import CBC, ImageCBC
|
from .cbc import CBC, ImageCBC
|
||||||
from .glvq import (
|
from .glvq import (
|
||||||
@@ -10,17 +8,32 @@ from .glvq import (
|
|||||||
GLVQ21,
|
GLVQ21,
|
||||||
GMLVQ,
|
GMLVQ,
|
||||||
GRLVQ,
|
GRLVQ,
|
||||||
|
GTLVQ,
|
||||||
LGMLVQ,
|
LGMLVQ,
|
||||||
LVQMLN,
|
LVQMLN,
|
||||||
ImageGLVQ,
|
ImageGLVQ,
|
||||||
ImageGMLVQ,
|
ImageGMLVQ,
|
||||||
|
ImageGTLVQ,
|
||||||
SiameseGLVQ,
|
SiameseGLVQ,
|
||||||
SiameseGMLVQ,
|
SiameseGMLVQ,
|
||||||
|
SiameseGTLVQ,
|
||||||
)
|
)
|
||||||
from .knn import KNN
|
from .knn import KNN
|
||||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
from .lvq import (
|
||||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
|
LVQ1,
|
||||||
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
|
LVQ21,
|
||||||
|
MedianLVQ,
|
||||||
|
)
|
||||||
|
from .probabilistic import (
|
||||||
|
CELVQ,
|
||||||
|
RSLVQ,
|
||||||
|
SLVQ,
|
||||||
|
)
|
||||||
|
from .unsupervised import (
|
||||||
|
GrowingNeuralGas,
|
||||||
|
KohonenSOM,
|
||||||
|
NeuralGas,
|
||||||
|
)
|
||||||
from .vis import *
|
from .vis import *
|
||||||
|
|
||||||
__version__ = "0.2.0"
|
__version__ = "0.5.0"
|
||||||
|
@@ -1,7 +1,5 @@
|
|||||||
"""Abstract classes to be inherited by prototorch models."""
|
"""Abstract classes to be inherited by prototorch models."""
|
||||||
|
|
||||||
from typing import Final, final
|
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
import torchmetrics
|
import torchmetrics
|
||||||
@@ -9,25 +7,14 @@ import torchmetrics
|
|||||||
from ..core.competitions import WTAC
|
from ..core.competitions import WTAC
|
||||||
from ..core.components import Components, LabeledComponents
|
from ..core.components import Components, LabeledComponents
|
||||||
from ..core.distances import euclidean_distance
|
from ..core.distances import euclidean_distance
|
||||||
from ..core.initializers import LabelsInitializer
|
from ..core.initializers import LabelsInitializer, ZerosCompInitializer
|
||||||
from ..core.pooling import stratified_min_pooling
|
from ..core.pooling import stratified_min_pooling
|
||||||
from ..nn.wrappers import LambdaLayer
|
from ..nn.wrappers import LambdaLayer
|
||||||
|
|
||||||
|
|
||||||
class ProtoTorchMixin(object):
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class ProtoTorchBolt(pl.LightningModule):
|
class ProtoTorchBolt(pl.LightningModule):
|
||||||
"""All ProtoTorch models are ProtoTorch Bolts."""
|
"""All ProtoTorch models are ProtoTorch Bolts."""
|
||||||
def __repr__(self):
|
|
||||||
surep = super().__repr__()
|
|
||||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
|
||||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
|
||||||
return wrapped
|
|
||||||
|
|
||||||
|
|
||||||
class PrototypeModel(ProtoTorchBolt):
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
@@ -42,6 +29,34 @@ class PrototypeModel(ProtoTorchBolt):
|
|||||||
self.lr_scheduler = kwargs.get("lr_scheduler", None)
|
self.lr_scheduler = kwargs.get("lr_scheduler", None)
|
||||||
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||||
|
if self.lr_scheduler is not None:
|
||||||
|
scheduler = self.lr_scheduler(optimizer,
|
||||||
|
**self.lr_scheduler_kwargs)
|
||||||
|
sch = {
|
||||||
|
"scheduler": scheduler,
|
||||||
|
"interval": "step",
|
||||||
|
} # called after each training step
|
||||||
|
return [optimizer], [sch]
|
||||||
|
else:
|
||||||
|
return optimizer
|
||||||
|
|
||||||
|
def reconfigure_optimizers(self):
|
||||||
|
self.trainer.strategy.setup_optimizers(self.trainer)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
surep = super().__repr__()
|
||||||
|
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||||
|
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||||
|
return wrapped
|
||||||
|
|
||||||
|
|
||||||
|
class PrototypeModel(ProtoTorchBolt):
|
||||||
|
|
||||||
|
def __init__(self, hparams, **kwargs):
|
||||||
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||||
self.distance_layer = LambdaLayer(distance_fn)
|
self.distance_layer = LambdaLayer(distance_fn)
|
||||||
|
|
||||||
@@ -58,33 +73,19 @@ class PrototypeModel(ProtoTorchBolt):
|
|||||||
"""Only an alias for the prototypes."""
|
"""Only an alias for the prototypes."""
|
||||||
return self.prototypes
|
return self.prototypes
|
||||||
|
|
||||||
def configure_optimizers(self):
|
|
||||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
|
||||||
if self.lr_scheduler is not None:
|
|
||||||
scheduler = self.lr_scheduler(optimizer,
|
|
||||||
**self.lr_scheduler_kwargs)
|
|
||||||
sch = {
|
|
||||||
"scheduler": scheduler,
|
|
||||||
"interval": "step",
|
|
||||||
} # called after each training step
|
|
||||||
return [optimizer], [sch]
|
|
||||||
else:
|
|
||||||
return optimizer
|
|
||||||
|
|
||||||
@final
|
|
||||||
def reconfigure_optimizers(self):
|
|
||||||
self.trainer.accelerator_backend.setup_optimizers(self.trainer)
|
|
||||||
|
|
||||||
def add_prototypes(self, *args, **kwargs):
|
def add_prototypes(self, *args, **kwargs):
|
||||||
self.proto_layer.add_components(*args, **kwargs)
|
self.proto_layer.add_components(*args, **kwargs)
|
||||||
|
self.hparams.distribution = self.proto_layer.distribution
|
||||||
self.reconfigure_optimizers()
|
self.reconfigure_optimizers()
|
||||||
|
|
||||||
def remove_prototypes(self, indices):
|
def remove_prototypes(self, indices):
|
||||||
self.proto_layer.remove_components(indices)
|
self.proto_layer.remove_components(indices)
|
||||||
|
self.hparams.distribution = self.proto_layer.distribution
|
||||||
self.reconfigure_optimizers()
|
self.reconfigure_optimizers()
|
||||||
|
|
||||||
|
|
||||||
class UnsupervisedPrototypeModel(PrototypeModel):
|
class UnsupervisedPrototypeModel(PrototypeModel):
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
@@ -97,7 +98,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def compute_distances(self, x):
|
def compute_distances(self, x):
|
||||||
protos = self.proto_layer()
|
protos = self.proto_layer().type_as(x)
|
||||||
distances = self.distance_layer(x, protos)
|
distances = self.distance_layer(x, protos)
|
||||||
return distances
|
return distances
|
||||||
|
|
||||||
@@ -107,19 +108,33 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
|||||||
|
|
||||||
|
|
||||||
class SupervisedPrototypeModel(PrototypeModel):
|
class SupervisedPrototypeModel(PrototypeModel):
|
||||||
def __init__(self, hparams, **kwargs):
|
|
||||||
|
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
# Layers
|
# Layers
|
||||||
|
distribution = hparams.get("distribution", None)
|
||||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||||
labels_initializer = kwargs.get("labels_initializer",
|
labels_initializer = kwargs.get("labels_initializer",
|
||||||
LabelsInitializer())
|
LabelsInitializer())
|
||||||
|
if not skip_proto_layer:
|
||||||
|
# when subclasses do not need a customized prototype layer
|
||||||
if prototypes_initializer is not None:
|
if prototypes_initializer is not None:
|
||||||
|
# when building a new model
|
||||||
self.proto_layer = LabeledComponents(
|
self.proto_layer = LabeledComponents(
|
||||||
distribution=self.hparams.distribution,
|
distribution=distribution,
|
||||||
components_initializer=prototypes_initializer,
|
components_initializer=prototypes_initializer,
|
||||||
labels_initializer=labels_initializer,
|
labels_initializer=labels_initializer,
|
||||||
)
|
)
|
||||||
|
proto_shape = self.proto_layer.components.shape[1:]
|
||||||
|
self.hparams.initialized_proto_shape = proto_shape
|
||||||
|
else:
|
||||||
|
# when restoring a checkpointed model
|
||||||
|
self.proto_layer = LabeledComponents(
|
||||||
|
distribution=distribution,
|
||||||
|
components_initializer=ZerosCompInitializer(
|
||||||
|
self.hparams.initialized_proto_shape),
|
||||||
|
)
|
||||||
self.competition_layer = WTAC()
|
self.competition_layer = WTAC()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@@ -137,14 +152,14 @@ class SupervisedPrototypeModel(PrototypeModel):
|
|||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
distances = self.compute_distances(x)
|
distances = self.compute_distances(x)
|
||||||
plabels = self.proto_layer.labels
|
_, plabels = self.proto_layer()
|
||||||
winning = stratified_min_pooling(distances, plabels)
|
winning = stratified_min_pooling(distances, plabels)
|
||||||
y_pred = torch.nn.functional.softmin(winning)
|
y_pred = torch.nn.functional.softmin(winning, dim=1)
|
||||||
return y_pred
|
return y_pred
|
||||||
|
|
||||||
def predict_from_distances(self, distances):
|
def predict_from_distances(self, distances):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
plabels = self.proto_layer.labels
|
_, plabels = self.proto_layer()
|
||||||
y_pred = self.competition_layer(distances, plabels)
|
y_pred = self.competition_layer(distances, plabels)
|
||||||
return y_pred
|
return y_pred
|
||||||
|
|
||||||
@@ -166,12 +181,25 @@ class SupervisedPrototypeModel(PrototypeModel):
|
|||||||
prog_bar=True,
|
prog_bar=True,
|
||||||
logger=True)
|
logger=True)
|
||||||
|
|
||||||
|
def test_step(self, batch, batch_idx):
|
||||||
|
x, targets = batch
|
||||||
|
|
||||||
|
preds = self.predict(x)
|
||||||
|
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||||
|
|
||||||
|
self.log("test_acc", accuracy)
|
||||||
|
|
||||||
|
|
||||||
|
class ProtoTorchMixin(object):
|
||||||
|
"""All mixins are ProtoTorchMixins."""
|
||||||
|
|
||||||
|
|
||||||
class NonGradientMixin(ProtoTorchMixin):
|
class NonGradientMixin(ProtoTorchMixin):
|
||||||
"""Mixin for custom non-gradient optimization."""
|
"""Mixin for custom non-gradient optimization."""
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
self.automatic_optimization: Final = False
|
self.automatic_optimization = False
|
||||||
|
|
||||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -179,7 +207,7 @@ class NonGradientMixin(ProtoTorchMixin):
|
|||||||
|
|
||||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||||
"""Mixin for models with image prototypes."""
|
"""Mixin for models with image prototypes."""
|
||||||
@final
|
|
||||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||||
|
@@ -11,6 +11,7 @@ from .extras import ConnectionTopology
|
|||||||
|
|
||||||
|
|
||||||
class PruneLoserPrototypes(pl.Callback):
|
class PruneLoserPrototypes(pl.Callback):
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
threshold=0.01,
|
threshold=0.01,
|
||||||
idle_epochs=10,
|
idle_epochs=10,
|
||||||
@@ -55,7 +56,7 @@ class PruneLoserPrototypes(pl.Callback):
|
|||||||
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
print(f"Re-adding pruned prototypes...")
|
print(f"Re-adding pruned prototypes...")
|
||||||
print(f"{distribution=}")
|
print(f"distribution={distribution}")
|
||||||
pl_module.add_prototypes(
|
pl_module.add_prototypes(
|
||||||
distribution=distribution,
|
distribution=distribution,
|
||||||
components_initializer=self.prototypes_initializer)
|
components_initializer=self.prototypes_initializer)
|
||||||
@@ -67,6 +68,7 @@ class PruneLoserPrototypes(pl.Callback):
|
|||||||
|
|
||||||
|
|
||||||
class PrototypeConvergence(pl.Callback):
|
class PrototypeConvergence(pl.Callback):
|
||||||
|
|
||||||
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
||||||
self.min_delta = min_delta
|
self.min_delta = min_delta
|
||||||
self.idle_epochs = idle_epochs # epochs to wait
|
self.idle_epochs = idle_epochs # epochs to wait
|
||||||
@@ -89,6 +91,7 @@ class GNGCallback(pl.Callback):
|
|||||||
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, reduction=0.1, freq=10):
|
def __init__(self, reduction=0.1, freq=10):
|
||||||
self.reduction = reduction
|
self.reduction = reduction
|
||||||
self.freq = freq
|
self.freq = freq
|
||||||
@@ -134,4 +137,4 @@ class GNGCallback(pl.Callback):
|
|||||||
pl_module.errors[
|
pl_module.errors[
|
||||||
worst_neighbor] = errors[worst_neighbor] * self.reduction
|
worst_neighbor] = errors[worst_neighbor] * self.reduction
|
||||||
|
|
||||||
trainer.accelerator_backend.setup_optimizers(trainer)
|
trainer.strategy.setup_optimizers(trainer)
|
||||||
|
@@ -13,8 +13,9 @@ from .glvq import SiameseGLVQ
|
|||||||
|
|
||||||
class CBC(SiameseGLVQ):
|
class CBC(SiameseGLVQ):
|
||||||
"""Classification-By-Components."""
|
"""Classification-By-Components."""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, skip_proto_layer=True, **kwargs)
|
||||||
|
|
||||||
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||||
components_initializer = kwargs.get("components_initializer", None)
|
components_initializer = kwargs.get("components_initializer", None)
|
||||||
@@ -48,7 +49,7 @@ class CBC(SiameseGLVQ):
|
|||||||
y_pred = self(x)
|
y_pred = self(x)
|
||||||
num_classes = self.num_classes
|
num_classes = self.num_classes
|
||||||
y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
|
y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
|
||||||
loss = self.loss(y_pred, y_true).mean(dim=0)
|
loss = self.loss(y_pred, y_true).mean()
|
||||||
return y_pred, loss
|
return y_pred, loss
|
||||||
|
|
||||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||||
|
@@ -1,124 +0,0 @@
|
|||||||
"""Prototorch Data Modules
|
|
||||||
|
|
||||||
This allows to store the used dataset inside a Lightning Module.
|
|
||||||
Mainly used for PytorchLightningCLI configurations.
|
|
||||||
"""
|
|
||||||
from typing import Any, Optional, Type
|
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
from torch.utils.data import DataLoader, Dataset, random_split
|
|
||||||
from torchvision import transforms
|
|
||||||
from torchvision.datasets import MNIST
|
|
||||||
|
|
||||||
import prototorch as pt
|
|
||||||
|
|
||||||
|
|
||||||
# MNIST
|
|
||||||
class MNISTDataModule(pl.LightningDataModule):
|
|
||||||
def __init__(self, batch_size=32):
|
|
||||||
super().__init__()
|
|
||||||
self.batch_size = batch_size
|
|
||||||
|
|
||||||
# Download mnist dataset as side-effect, only called on the first cpu
|
|
||||||
def prepare_data(self):
|
|
||||||
MNIST("~/datasets", train=True, download=True)
|
|
||||||
MNIST("~/datasets", train=False, download=True)
|
|
||||||
|
|
||||||
# called for every GPU/machine (assigning state is OK)
|
|
||||||
def setup(self, stage=None):
|
|
||||||
# Transforms
|
|
||||||
transform = transforms.Compose([
|
|
||||||
transforms.ToTensor(),
|
|
||||||
])
|
|
||||||
# Split dataset
|
|
||||||
if stage in (None, "fit"):
|
|
||||||
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
|
||||||
self.mnist_train, self.mnist_val = random_split(
|
|
||||||
mnist_train,
|
|
||||||
[55000, 5000],
|
|
||||||
)
|
|
||||||
if stage == (None, "test"):
|
|
||||||
self.mnist_test = MNIST(
|
|
||||||
"~/datasets",
|
|
||||||
train=False,
|
|
||||||
transform=transform,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
def train_dataloader(self):
|
|
||||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
||||||
return mnist_train
|
|
||||||
|
|
||||||
def val_dataloader(self):
|
|
||||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
||||||
return mnist_val
|
|
||||||
|
|
||||||
def test_dataloader(self):
|
|
||||||
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
||||||
return mnist_test
|
|
||||||
|
|
||||||
|
|
||||||
# def train_on_mnist(batch_size=256) -> type:
|
|
||||||
# class DataClass(pl.LightningModule):
|
|
||||||
# datamodule = MNISTDataModule(batch_size=batch_size)
|
|
||||||
|
|
||||||
# def __init__(self, *args, **kwargs):
|
|
||||||
# prototype_initializer = kwargs.pop(
|
|
||||||
# "prototype_initializer", pt.components.Zeros((28, 28, 1)))
|
|
||||||
# super().__init__(*args,
|
|
||||||
# prototype_initializer=prototype_initializer,
|
|
||||||
# **kwargs)
|
|
||||||
|
|
||||||
# dc: Type[DataClass] = DataClass
|
|
||||||
# return dc
|
|
||||||
|
|
||||||
|
|
||||||
# ABSTRACT
|
|
||||||
class GeneralDataModule(pl.LightningDataModule):
|
|
||||||
def __init__(self, dataset: Dataset, batch_size: int = 32) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.train_dataset = dataset
|
|
||||||
self.batch_size = batch_size
|
|
||||||
|
|
||||||
def train_dataloader(self) -> DataLoader:
|
|
||||||
return DataLoader(self.train_dataset, batch_size=self.batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
# def train_on_dataset(dataset: Dataset, batch_size: int = 256):
|
|
||||||
# class DataClass(pl.LightningModule):
|
|
||||||
# datamodule = GeneralDataModule(dataset, batch_size)
|
|
||||||
# datashape = dataset[0][0].shape
|
|
||||||
# example_input_array = torch.zeros_like(dataset[0][0]).unsqueeze(0)
|
|
||||||
|
|
||||||
# def __init__(self, *args: Any, **kwargs: Any) -> None:
|
|
||||||
# prototype_initializer = kwargs.pop(
|
|
||||||
# "prototype_initializer",
|
|
||||||
# pt.components.Zeros(self.datashape),
|
|
||||||
# )
|
|
||||||
# super().__init__(*args,
|
|
||||||
# prototype_initializer=prototype_initializer,
|
|
||||||
# **kwargs)
|
|
||||||
|
|
||||||
# return DataClass
|
|
||||||
|
|
||||||
# if __name__ == "__main__":
|
|
||||||
# from prototorch.models import GLVQ
|
|
||||||
|
|
||||||
# demo_dataset = pt.datasets.Iris()
|
|
||||||
|
|
||||||
# TrainingClass: Type = train_on_dataset(demo_dataset)
|
|
||||||
|
|
||||||
# class DemoGLVQ(TrainingClass, GLVQ):
|
|
||||||
# """Model Definition."""
|
|
||||||
|
|
||||||
# # Hyperparameters
|
|
||||||
# hparams = dict(
|
|
||||||
# distribution={
|
|
||||||
# "num_classes": 3,
|
|
||||||
# "prototypes_per_class": 4
|
|
||||||
# },
|
|
||||||
# lr=0.01,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# initialized = DemoGLVQ(hparams)
|
|
||||||
# print(initialized)
|
|
@@ -15,7 +15,46 @@ def rank_scaled_gaussian(distances, lambd):
|
|||||||
return torch.exp(-torch.exp(-ranks / lambd) * distances)
|
return torch.exp(-torch.exp(-ranks / lambd) * distances)
|
||||||
|
|
||||||
|
|
||||||
|
def orthogonalization(tensors):
|
||||||
|
"""Orthogonalization via polar decomposition """
|
||||||
|
u, _, v = torch.svd(tensors, compute_uv=True)
|
||||||
|
u_shape = tuple(list(u.shape))
|
||||||
|
v_shape = tuple(list(v.shape))
|
||||||
|
|
||||||
|
# reshape to (num x N x M)
|
||||||
|
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
|
||||||
|
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
|
||||||
|
|
||||||
|
out = u @ v.permute([0, 2, 1])
|
||||||
|
|
||||||
|
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def ltangent_distance(x, y, omegas):
|
||||||
|
r"""Localized Tangent distance.
|
||||||
|
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
|
||||||
|
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
|
||||||
|
|
||||||
|
:param `torch.tensor` omegas: Three dimensional matrix
|
||||||
|
:rtype: `torch.tensor`
|
||||||
|
"""
|
||||||
|
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)]
|
||||||
|
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
|
||||||
|
omegas, omegas.permute([0, 2, 1]))
|
||||||
|
projected_x = x @ p
|
||||||
|
projected_y = torch.diagonal(y @ p).T
|
||||||
|
expanded_y = torch.unsqueeze(projected_y, dim=1)
|
||||||
|
batchwise_difference = expanded_y - projected_x
|
||||||
|
differences_squared = batchwise_difference**2
|
||||||
|
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
|
||||||
|
distances = distances.permute(1, 0)
|
||||||
|
return distances
|
||||||
|
|
||||||
|
|
||||||
class GaussianPrior(torch.nn.Module):
|
class GaussianPrior(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self, variance):
|
def __init__(self, variance):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.variance = variance
|
self.variance = variance
|
||||||
@@ -25,6 +64,7 @@ class GaussianPrior(torch.nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class RankScaledGaussianPrior(torch.nn.Module):
|
class RankScaledGaussianPrior(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self, lambd):
|
def __init__(self, lambd):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.lambd = lambd
|
self.lambd = lambd
|
||||||
@@ -34,6 +74,7 @@ class RankScaledGaussianPrior(torch.nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class ConnectionTopology(torch.nn.Module):
|
class ConnectionTopology(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self, agelimit, num_prototypes):
|
def __init__(self, agelimit, num_prototypes):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.agelimit = agelimit
|
self.agelimit = agelimit
|
||||||
|
@@ -4,29 +4,44 @@ import torch
|
|||||||
from torch.nn.parameter import Parameter
|
from torch.nn.parameter import Parameter
|
||||||
|
|
||||||
from ..core.competitions import wtac
|
from ..core.competitions import wtac
|
||||||
from ..core.distances import lomega_distance, omega_distance, squared_euclidean_distance
|
from ..core.distances import (
|
||||||
from ..core.initializers import EyeTransformInitializer
|
lomega_distance,
|
||||||
from ..core.losses import glvq_loss, lvq1_loss, lvq21_loss
|
omega_distance,
|
||||||
from ..nn.activations import get_activation
|
squared_euclidean_distance,
|
||||||
|
)
|
||||||
|
from ..core.initializers import EyeLinearTransformInitializer
|
||||||
|
from ..core.losses import (
|
||||||
|
GLVQLoss,
|
||||||
|
lvq1_loss,
|
||||||
|
lvq21_loss,
|
||||||
|
)
|
||||||
|
from ..core.transforms import LinearTransform
|
||||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
||||||
|
from .extras import ltangent_distance, orthogonalization
|
||||||
|
|
||||||
|
|
||||||
class GLVQ(SupervisedPrototypeModel):
|
class GLVQ(SupervisedPrototypeModel):
|
||||||
"""Generalized Learning Vector Quantization."""
|
"""Generalized Learning Vector Quantization."""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
# Default hparams
|
# Default hparams
|
||||||
|
self.hparams.setdefault("margin", 0.0)
|
||||||
self.hparams.setdefault("transfer_fn", "identity")
|
self.hparams.setdefault("transfer_fn", "identity")
|
||||||
self.hparams.setdefault("transfer_beta", 10.0)
|
self.hparams.setdefault("transfer_beta", 10.0)
|
||||||
|
|
||||||
# Layers
|
|
||||||
transfer_fn = get_activation(self.hparams.transfer_fn)
|
|
||||||
self.transfer_layer = LambdaLayer(transfer_fn)
|
|
||||||
|
|
||||||
# Loss
|
# Loss
|
||||||
self.loss = LossLayer(glvq_loss)
|
self.loss = GLVQLoss(
|
||||||
|
margin=self.hparams.margin,
|
||||||
|
transfer_fn=self.hparams.transfer_fn,
|
||||||
|
beta=self.hparams.transfer_beta,
|
||||||
|
)
|
||||||
|
|
||||||
|
# def on_save_checkpoint(self, checkpoint):
|
||||||
|
# if "prototype_win_ratios" in checkpoint["state_dict"]:
|
||||||
|
# del checkpoint["state_dict"]["prototype_win_ratios"]
|
||||||
|
|
||||||
def initialize_prototype_win_ratios(self):
|
def initialize_prototype_win_ratios(self):
|
||||||
self.register_buffer(
|
self.register_buffer(
|
||||||
@@ -54,10 +69,8 @@ class GLVQ(SupervisedPrototypeModel):
|
|||||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||||
x, y = batch
|
x, y = batch
|
||||||
out = self.compute_distances(x)
|
out = self.compute_distances(x)
|
||||||
plabels = self.proto_layer.labels
|
_, plabels = self.proto_layer()
|
||||||
mu = self.loss(out, y, prototype_labels=plabels)
|
loss = self.loss(out, y, plabels)
|
||||||
batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
|
|
||||||
loss = batch_loss.sum(dim=0)
|
|
||||||
return out, loss
|
return out, loss
|
||||||
|
|
||||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||||
@@ -99,6 +112,7 @@ class SiameseGLVQ(GLVQ):
|
|||||||
transformation pipeline are only learned from the inputs.
|
transformation pipeline are only learned from the inputs.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
hparams,
|
hparams,
|
||||||
backbone=torch.nn.Identity(),
|
backbone=torch.nn.Identity(),
|
||||||
@@ -113,7 +127,8 @@ class SiameseGLVQ(GLVQ):
|
|||||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||||
lr=self.hparams.proto_lr)
|
lr=self.hparams.proto_lr)
|
||||||
# Only add a backbone optimizer if backbone has trainable parameters
|
# Only add a backbone optimizer if backbone has trainable parameters
|
||||||
if (bb_params := list(self.backbone.parameters())):
|
bb_params = list(self.backbone.parameters())
|
||||||
|
if (bb_params):
|
||||||
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
|
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
|
||||||
optimizers = [proto_opt, bb_opt]
|
optimizers = [proto_opt, bb_opt]
|
||||||
else:
|
else:
|
||||||
@@ -132,9 +147,13 @@ class SiameseGLVQ(GLVQ):
|
|||||||
protos, _ = self.proto_layer()
|
protos, _ = self.proto_layer()
|
||||||
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
|
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
|
||||||
latent_x = self.backbone(x)
|
latent_x = self.backbone(x)
|
||||||
self.backbone.requires_grad_(self.both_path_gradients)
|
|
||||||
|
bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
|
||||||
|
|
||||||
|
self.backbone.requires_grad_(bb_grad and self.both_path_gradients)
|
||||||
latent_protos = self.backbone(protos)
|
latent_protos = self.backbone(protos)
|
||||||
self.backbone.requires_grad_(True)
|
self.backbone.requires_grad_(bb_grad)
|
||||||
|
|
||||||
distances = self.distance_layer(latent_x, latent_protos)
|
distances = self.distance_layer(latent_x, latent_protos)
|
||||||
return distances
|
return distances
|
||||||
|
|
||||||
@@ -164,6 +183,7 @@ class LVQMLN(SiameseGLVQ):
|
|||||||
rather in the embedding space.
|
rather in the embedding space.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def compute_distances(self, x):
|
def compute_distances(self, x):
|
||||||
latent_protos, _ = self.proto_layer()
|
latent_protos, _ = self.proto_layer()
|
||||||
latent_x = self.backbone(x)
|
latent_x = self.backbone(x)
|
||||||
@@ -179,6 +199,7 @@ class GRLVQ(SiameseGLVQ):
|
|||||||
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
@@ -204,22 +225,27 @@ class SiameseGMLVQ(SiameseGLVQ):
|
|||||||
Implemented as a Siamese network with a linear transformation backbone.
|
Implemented as a Siamese network with a linear transformation backbone.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
# Override the backbone
|
# Override the backbone
|
||||||
self.backbone = torch.nn.Linear(self.hparams.input_dim,
|
omega_initializer = kwargs.get("omega_initializer",
|
||||||
|
EyeLinearTransformInitializer())
|
||||||
|
self.backbone = LinearTransform(
|
||||||
|
self.hparams.input_dim,
|
||||||
self.hparams.latent_dim,
|
self.hparams.latent_dim,
|
||||||
bias=False)
|
initializer=omega_initializer,
|
||||||
|
)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def omega_matrix(self):
|
def omega_matrix(self):
|
||||||
return self.backbone.weight.detach().cpu()
|
return self.backbone.weights
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def lambda_matrix(self):
|
def lambda_matrix(self):
|
||||||
omega = self.backbone.weight # (latent_dim, input_dim)
|
omega = self.backbone.weight # (input_dim, latent_dim)
|
||||||
lam = omega.T @ omega
|
lam = omega @ omega.T
|
||||||
return lam.detach().cpu()
|
return lam.detach().cpu()
|
||||||
|
|
||||||
|
|
||||||
@@ -230,13 +256,14 @@ class GMLVQ(GLVQ):
|
|||||||
function. This makes it easier to implement a localized variant.
|
function. This makes it easier to implement a localized variant.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
||||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||||
|
|
||||||
# Additional parameters
|
# Additional parameters
|
||||||
omega_initializer = kwargs.get("omega_initializer",
|
omega_initializer = kwargs.get("omega_initializer",
|
||||||
EyeTransformInitializer())
|
EyeLinearTransformInitializer())
|
||||||
omega = omega_initializer.generate(self.hparams.input_dim,
|
omega = omega_initializer.generate(self.hparams.input_dim,
|
||||||
self.hparams.latent_dim)
|
self.hparams.latent_dim)
|
||||||
self.register_parameter("_omega", Parameter(omega))
|
self.register_parameter("_omega", Parameter(omega))
|
||||||
@@ -247,6 +274,12 @@ class GMLVQ(GLVQ):
|
|||||||
def omega_matrix(self):
|
def omega_matrix(self):
|
||||||
return self._omega.detach().cpu()
|
return self._omega.detach().cpu()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lambda_matrix(self):
|
||||||
|
omega = self._omega.detach() # (input_dim, latent_dim)
|
||||||
|
lam = omega @ omega.T
|
||||||
|
return lam.detach().cpu()
|
||||||
|
|
||||||
def compute_distances(self, x):
|
def compute_distances(self, x):
|
||||||
protos, _ = self.proto_layer()
|
protos, _ = self.proto_layer()
|
||||||
distances = self.distance_layer(x, protos, self._omega)
|
distances = self.distance_layer(x, protos, self._omega)
|
||||||
@@ -258,6 +291,7 @@ class GMLVQ(GLVQ):
|
|||||||
|
|
||||||
class LGMLVQ(GMLVQ):
|
class LGMLVQ(GMLVQ):
|
||||||
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
distance_fn = kwargs.pop("distance_fn", lomega_distance)
|
distance_fn = kwargs.pop("distance_fn", lomega_distance)
|
||||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||||
@@ -272,8 +306,48 @@ class LGMLVQ(GMLVQ):
|
|||||||
self.register_parameter("_omega", Parameter(omega))
|
self.register_parameter("_omega", Parameter(omega))
|
||||||
|
|
||||||
|
|
||||||
|
class GTLVQ(LGMLVQ):
|
||||||
|
"""Localized and Generalized Tangent Learning Vector Quantization."""
|
||||||
|
|
||||||
|
def __init__(self, hparams, **kwargs):
|
||||||
|
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
|
||||||
|
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||||
|
|
||||||
|
omega_initializer = kwargs.get("omega_initializer")
|
||||||
|
|
||||||
|
if omega_initializer is not None:
|
||||||
|
subspace = omega_initializer.generate(self.hparams.input_dim,
|
||||||
|
self.hparams.latent_dim)
|
||||||
|
omega = torch.repeat_interleave(subspace.unsqueeze(0),
|
||||||
|
self.num_prototypes,
|
||||||
|
dim=0)
|
||||||
|
else:
|
||||||
|
omega = torch.rand(
|
||||||
|
self.num_prototypes,
|
||||||
|
self.hparams.input_dim,
|
||||||
|
self.hparams.latent_dim,
|
||||||
|
device=self.device,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Re-register `_omega` to override the one from the super class.
|
||||||
|
self.register_parameter("_omega", Parameter(omega))
|
||||||
|
|
||||||
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||||
|
with torch.no_grad():
|
||||||
|
self._omega.copy_(orthogonalization(self._omega))
|
||||||
|
|
||||||
|
|
||||||
|
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
|
||||||
|
"""Generalized Tangent Learning Vector Quantization.
|
||||||
|
|
||||||
|
Implemented as a Siamese network with a linear transformation backbone.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
class GLVQ1(GLVQ):
|
class GLVQ1(GLVQ):
|
||||||
"""Generalized Learning Vector Quantization 1."""
|
"""Generalized Learning Vector Quantization 1."""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
self.loss = LossLayer(lvq1_loss)
|
self.loss = LossLayer(lvq1_loss)
|
||||||
@@ -282,6 +356,7 @@ class GLVQ1(GLVQ):
|
|||||||
|
|
||||||
class GLVQ21(GLVQ):
|
class GLVQ21(GLVQ):
|
||||||
"""Generalized Learning Vector Quantization 2.1."""
|
"""Generalized Learning Vector Quantization 2.1."""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
self.loss = LossLayer(lvq21_loss)
|
self.loss = LossLayer(lvq21_loss)
|
||||||
@@ -304,3 +379,18 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
|
|||||||
after updates.
|
after updates.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
|
||||||
|
"""GTLVQ for training on image data.
|
||||||
|
|
||||||
|
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||||
|
after updates.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||||
|
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||||
|
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||||
|
with torch.no_grad():
|
||||||
|
self._omega.copy_(orthogonalization(self._omega))
|
||||||
|
@@ -4,15 +4,19 @@ import warnings
|
|||||||
|
|
||||||
from ..core.competitions import KNNC
|
from ..core.competitions import KNNC
|
||||||
from ..core.components import LabeledComponents
|
from ..core.components import LabeledComponents
|
||||||
from ..core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
|
from ..core.initializers import (
|
||||||
|
LiteralCompInitializer,
|
||||||
|
LiteralLabelsInitializer,
|
||||||
|
)
|
||||||
from ..utils.utils import parse_data_arg
|
from ..utils.utils import parse_data_arg
|
||||||
from .abstract import SupervisedPrototypeModel
|
from .abstract import SupervisedPrototypeModel
|
||||||
|
|
||||||
|
|
||||||
class KNN(SupervisedPrototypeModel):
|
class KNN(SupervisedPrototypeModel):
|
||||||
"""K-Nearest-Neighbors classification algorithm."""
|
"""K-Nearest-Neighbors classification algorithm."""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, skip_proto_layer=True, **kwargs)
|
||||||
|
|
||||||
# Default hparams
|
# Default hparams
|
||||||
self.hparams.setdefault("k", 1)
|
self.hparams.setdefault("k", 1)
|
||||||
@@ -24,7 +28,7 @@ class KNN(SupervisedPrototypeModel):
|
|||||||
|
|
||||||
# Layers
|
# Layers
|
||||||
self.proto_layer = LabeledComponents(
|
self.proto_layer = LabeledComponents(
|
||||||
distribution=[],
|
distribution=len(data) * [1],
|
||||||
components_initializer=LiteralCompInitializer(data),
|
components_initializer=LiteralCompInitializer(data),
|
||||||
labels_initializer=LiteralLabelsInitializer(targets))
|
labels_initializer=LiteralLabelsInitializer(targets))
|
||||||
self.competition_layer = KNNC(k=self.hparams.k)
|
self.competition_layer = KNNC(k=self.hparams.k)
|
||||||
|
@@ -1,16 +1,17 @@
|
|||||||
"""LVQ models that are optimized using non-gradient methods."""
|
"""LVQ models that are optimized using non-gradient methods."""
|
||||||
|
|
||||||
from ..core.losses import _get_dp_dm
|
from ..core.losses import _get_dp_dm
|
||||||
|
from ..nn.activations import get_activation
|
||||||
|
from ..nn.wrappers import LambdaLayer
|
||||||
from .abstract import NonGradientMixin
|
from .abstract import NonGradientMixin
|
||||||
from .glvq import GLVQ
|
from .glvq import GLVQ
|
||||||
|
|
||||||
|
|
||||||
class LVQ1(NonGradientMixin, GLVQ):
|
class LVQ1(NonGradientMixin, GLVQ):
|
||||||
"""Learning Vector Quantization 1."""
|
"""Learning Vector Quantization 1."""
|
||||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
|
||||||
protos = self.proto_layer.components
|
|
||||||
plabels = self.proto_layer.labels
|
|
||||||
|
|
||||||
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||||
|
protos, plables = self.proto_layer()
|
||||||
x, y = train_batch
|
x, y = train_batch
|
||||||
dis = self.compute_distances(x)
|
dis = self.compute_distances(x)
|
||||||
# TODO Vectorized implementation
|
# TODO Vectorized implementation
|
||||||
@@ -28,8 +29,8 @@ class LVQ1(NonGradientMixin, GLVQ):
|
|||||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||||
strict=False)
|
strict=False)
|
||||||
|
|
||||||
print(f"{dis=}")
|
print(f"dis={dis}")
|
||||||
print(f"{y=}")
|
print(f"y={y}")
|
||||||
# Logging
|
# Logging
|
||||||
self.log_acc(dis, y, tag="train_acc")
|
self.log_acc(dis, y, tag="train_acc")
|
||||||
|
|
||||||
@@ -38,9 +39,9 @@ class LVQ1(NonGradientMixin, GLVQ):
|
|||||||
|
|
||||||
class LVQ21(NonGradientMixin, GLVQ):
|
class LVQ21(NonGradientMixin, GLVQ):
|
||||||
"""Learning Vector Quantization 2.1."""
|
"""Learning Vector Quantization 2.1."""
|
||||||
|
|
||||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||||
protos = self.proto_layer.components
|
protos, plabels = self.proto_layer()
|
||||||
plabels = self.proto_layer.labels
|
|
||||||
|
|
||||||
x, y = train_batch
|
x, y = train_batch
|
||||||
dis = self.compute_distances(x)
|
dis = self.compute_distances(x)
|
||||||
@@ -66,4 +67,61 @@ class LVQ21(NonGradientMixin, GLVQ):
|
|||||||
|
|
||||||
|
|
||||||
class MedianLVQ(NonGradientMixin, GLVQ):
|
class MedianLVQ(NonGradientMixin, GLVQ):
|
||||||
"""Median LVQ"""
|
"""Median LVQ
|
||||||
|
|
||||||
|
# TODO Avoid computing distances over and over
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, hparams, verbose=True, **kwargs):
|
||||||
|
self.verbose = verbose
|
||||||
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
|
self.transfer_layer = LambdaLayer(
|
||||||
|
get_activation(self.hparams.transfer_fn))
|
||||||
|
|
||||||
|
def _f(self, x, y, protos, plabels):
|
||||||
|
d = self.distance_layer(x, protos)
|
||||||
|
dp, dm = _get_dp_dm(d, y, plabels)
|
||||||
|
mu = (dp - dm) / (dp + dm)
|
||||||
|
invmu = -1.0 * mu
|
||||||
|
f = self.transfer_layer(invmu, beta=self.hparams.transfer_beta) + 1.0
|
||||||
|
return f
|
||||||
|
|
||||||
|
def expectation(self, x, y, protos, plabels):
|
||||||
|
f = self._f(x, y, protos, plabels)
|
||||||
|
gamma = f / f.sum()
|
||||||
|
return gamma
|
||||||
|
|
||||||
|
def lower_bound(self, x, y, protos, plabels, gamma):
|
||||||
|
f = self._f(x, y, protos, plabels)
|
||||||
|
lower_bound = (gamma * f.log()).sum()
|
||||||
|
return lower_bound
|
||||||
|
|
||||||
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||||
|
protos, plabels = self.proto_layer()
|
||||||
|
|
||||||
|
x, y = train_batch
|
||||||
|
dis = self.compute_distances(x)
|
||||||
|
|
||||||
|
for i, _ in enumerate(protos):
|
||||||
|
# Expectation step
|
||||||
|
gamma = self.expectation(x, y, protos, plabels)
|
||||||
|
lower_bound = self.lower_bound(x, y, protos, plabels, gamma)
|
||||||
|
|
||||||
|
# Maximization step
|
||||||
|
_protos = protos + 0
|
||||||
|
for k, xk in enumerate(x):
|
||||||
|
_protos[i] = xk
|
||||||
|
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
|
||||||
|
if _lower_bound > lower_bound:
|
||||||
|
if self.verbose:
|
||||||
|
print(f"Updating prototype {i} to data {k}...")
|
||||||
|
self.proto_layer.load_state_dict({"_components": _protos},
|
||||||
|
strict=False)
|
||||||
|
break
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
self.log_acc(dis, y, tag="train_acc")
|
||||||
|
|
||||||
|
return None
|
||||||
|
@@ -11,6 +11,7 @@ from .glvq import GLVQ, SiameseGMLVQ
|
|||||||
|
|
||||||
class CELVQ(GLVQ):
|
class CELVQ(GLVQ):
|
||||||
"""Cross-Entropy Learning Vector Quantization."""
|
"""Cross-Entropy Learning Vector Quantization."""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
@@ -20,15 +21,16 @@ class CELVQ(GLVQ):
|
|||||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||||
x, y = batch
|
x, y = batch
|
||||||
out = self.compute_distances(x) # [None, num_protos]
|
out = self.compute_distances(x) # [None, num_protos]
|
||||||
plabels = self.proto_layer.labels
|
_, plabels = self.proto_layer()
|
||||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||||
probs = -1.0 * winning
|
probs = -1.0 * winning
|
||||||
batch_loss = self.loss(probs, y.long())
|
batch_loss = self.loss(probs, y.long())
|
||||||
loss = batch_loss.sum(dim=0)
|
loss = batch_loss.sum()
|
||||||
return out, loss
|
return out, loss
|
||||||
|
|
||||||
|
|
||||||
class ProbabilisticLVQ(GLVQ):
|
class ProbabilisticLVQ(GLVQ):
|
||||||
|
|
||||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
@@ -54,26 +56,38 @@ class ProbabilisticLVQ(GLVQ):
|
|||||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||||
x, y = batch
|
x, y = batch
|
||||||
out = self.forward(x)
|
out = self.forward(x)
|
||||||
plabels = self.proto_layer.labels
|
_, plabels = self.proto_layer()
|
||||||
batch_loss = self.loss(out, y, plabels)
|
batch_loss = self.loss(out, y, plabels)
|
||||||
loss = batch_loss.sum(dim=0)
|
loss = batch_loss.sum()
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|
||||||
class SLVQ(ProbabilisticLVQ):
|
class SLVQ(ProbabilisticLVQ):
|
||||||
"""Soft Learning Vector Quantization."""
|
"""Soft Learning Vector Quantization."""
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
# Default hparams
|
||||||
|
self.hparams.setdefault("variance", 1.0)
|
||||||
|
variance = self.hparams.get("variance")
|
||||||
|
|
||||||
|
self.conditional_distribution = GaussianPrior(variance)
|
||||||
self.loss = LossLayer(nllr_loss)
|
self.loss = LossLayer(nllr_loss)
|
||||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
|
||||||
|
|
||||||
|
|
||||||
class RSLVQ(ProbabilisticLVQ):
|
class RSLVQ(ProbabilisticLVQ):
|
||||||
"""Robust Soft Learning Vector Quantization."""
|
"""Robust Soft Learning Vector Quantization."""
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
# Default hparams
|
||||||
|
self.hparams.setdefault("variance", 1.0)
|
||||||
|
variance = self.hparams.get("variance")
|
||||||
|
|
||||||
|
self.conditional_distribution = GaussianPrior(variance)
|
||||||
self.loss = LossLayer(rslvq_loss)
|
self.loss = LossLayer(rslvq_loss)
|
||||||
self.conditional_distribution = GaussianPrior(self.hparams.variance)
|
|
||||||
|
|
||||||
|
|
||||||
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||||
@@ -81,10 +95,15 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
|||||||
|
|
||||||
TODO: Use Backbone LVQ instead
|
TODO: Use Backbone LVQ instead
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
self.conditional_distribution = RankScaledGaussianPrior(
|
|
||||||
self.hparams.lambd)
|
# Default hparams
|
||||||
|
self.hparams.setdefault("lambda", 1.0)
|
||||||
|
lam = self.hparams.get("lambda", 1.0)
|
||||||
|
|
||||||
|
self.conditional_distribution = RankScaledGaussianPrior(lam)
|
||||||
self.loss = torch.nn.KLDivLoss()
|
self.loss = torch.nn.KLDivLoss()
|
||||||
|
|
||||||
# FIXME
|
# FIXME
|
||||||
@@ -92,5 +111,5 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
|||||||
# x, y = batch
|
# x, y = batch
|
||||||
# y_pred = self(x)
|
# y_pred = self(x)
|
||||||
# batch_loss = self.loss(y_pred, y)
|
# batch_loss = self.loss(y_pred, y)
|
||||||
# loss = batch_loss.sum(dim=0)
|
# loss = batch_loss.sum()
|
||||||
# return loss
|
# return loss
|
||||||
|
@@ -18,6 +18,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
|||||||
TODO Allow non-2D grids
|
TODO Allow non-2D grids
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
h, w = hparams.get("shape")
|
h, w = hparams.get("shape")
|
||||||
# Ignore `num_prototypes`
|
# Ignore `num_prototypes`
|
||||||
@@ -34,7 +35,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
|||||||
|
|
||||||
# Additional parameters
|
# Additional parameters
|
||||||
x, y = torch.arange(h), torch.arange(w)
|
x, y = torch.arange(h), torch.arange(w)
|
||||||
grid = torch.stack(torch.meshgrid(x, y), dim=-1)
|
grid = torch.stack(torch.meshgrid(x, y, indexing="ij"), dim=-1)
|
||||||
self.register_buffer("_grid", grid)
|
self.register_buffer("_grid", grid)
|
||||||
self._sigma = self.hparams.sigma
|
self._sigma = self.hparams.sigma
|
||||||
self._lr = self.hparams.lr
|
self._lr = self.hparams.lr
|
||||||
@@ -53,12 +54,14 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
|||||||
grid = self._grid.view(-1, 2)
|
grid = self._grid.view(-1, 2)
|
||||||
gd = squared_euclidean_distance(wp, grid)
|
gd = squared_euclidean_distance(wp, grid)
|
||||||
nh = torch.exp(-gd / self._sigma**2)
|
nh = torch.exp(-gd / self._sigma**2)
|
||||||
protos = self.proto_layer.components
|
protos = self.proto_layer()
|
||||||
diff = x.unsqueeze(dim=1) - protos
|
diff = x.unsqueeze(dim=1) - protos
|
||||||
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
||||||
updated_protos = protos + delta.sum(dim=0)
|
updated_protos = protos + delta.sum(dim=0)
|
||||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
self.proto_layer.load_state_dict(
|
||||||
strict=False)
|
{"_components": updated_protos},
|
||||||
|
strict=False,
|
||||||
|
)
|
||||||
|
|
||||||
def training_epoch_end(self, training_step_outputs):
|
def training_epoch_end(self, training_step_outputs):
|
||||||
self._sigma = self.hparams.sigma * np.exp(
|
self._sigma = self.hparams.sigma * np.exp(
|
||||||
@@ -69,6 +72,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
|||||||
|
|
||||||
|
|
||||||
class HeskesSOM(UnsupervisedPrototypeModel):
|
class HeskesSOM(UnsupervisedPrototypeModel):
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
@@ -78,6 +82,7 @@ class HeskesSOM(UnsupervisedPrototypeModel):
|
|||||||
|
|
||||||
|
|
||||||
class NeuralGas(UnsupervisedPrototypeModel):
|
class NeuralGas(UnsupervisedPrototypeModel):
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
@@ -85,12 +90,12 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
|||||||
self.save_hyperparameters(hparams)
|
self.save_hyperparameters(hparams)
|
||||||
|
|
||||||
# Default hparams
|
# Default hparams
|
||||||
self.hparams.setdefault("agelimit", 10)
|
self.hparams.setdefault("age_limit", 10)
|
||||||
self.hparams.setdefault("lm", 1)
|
self.hparams.setdefault("lm", 1)
|
||||||
|
|
||||||
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
|
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
|
||||||
self.topology_layer = ConnectionTopology(
|
self.topology_layer = ConnectionTopology(
|
||||||
agelimit=self.hparams.agelimit,
|
agelimit=self.hparams.age_limit,
|
||||||
num_prototypes=self.hparams.num_prototypes,
|
num_prototypes=self.hparams.num_prototypes,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -110,6 +115,7 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
|||||||
|
|
||||||
|
|
||||||
class GrowingNeuralGas(NeuralGas):
|
class GrowingNeuralGas(NeuralGas):
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
@@ -132,7 +138,7 @@ class GrowingNeuralGas(NeuralGas):
|
|||||||
mask[torch.arange(len(mask)), winner] = 1.0
|
mask[torch.arange(len(mask)), winner] = 1.0
|
||||||
dp = d * mask
|
dp = d * mask
|
||||||
|
|
||||||
self.errors += torch.sum(dp * dp, dim=0)
|
self.errors += torch.sum(dp * dp)
|
||||||
self.errors *= self.hparams.step_reduction
|
self.errors *= self.hparams.step_reduction
|
||||||
|
|
||||||
self.topology_layer(d)
|
self.topology_layer(d)
|
||||||
@@ -141,6 +147,8 @@ class GrowingNeuralGas(NeuralGas):
|
|||||||
|
|
||||||
def configure_callbacks(self):
|
def configure_callbacks(self):
|
||||||
return [
|
return [
|
||||||
GNGCallback(reduction=self.hparams.insert_reduction,
|
GNGCallback(
|
||||||
freq=self.hparams.insert_freq)
|
reduction=self.hparams.insert_reduction,
|
||||||
|
freq=self.hparams.insert_freq,
|
||||||
|
)
|
||||||
]
|
]
|
||||||
|
@@ -7,14 +7,19 @@ import torchvision
|
|||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
|
||||||
|
from ..utils.colors import get_colors, get_legend_handles
|
||||||
from ..utils.utils import mesh2d
|
from ..utils.utils import mesh2d
|
||||||
|
|
||||||
|
|
||||||
class Vis2DAbstract(pl.Callback):
|
class Vis2DAbstract(pl.Callback):
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
data,
|
data=None,
|
||||||
title="Prototype Visualization",
|
title="Prototype Visualization",
|
||||||
cmap="viridis",
|
cmap="viridis",
|
||||||
|
xlabel="Data dimension 1",
|
||||||
|
ylabel="Data dimension 2",
|
||||||
|
legend_labels=None,
|
||||||
border=0.1,
|
border=0.1,
|
||||||
resolution=100,
|
resolution=100,
|
||||||
flatten_data=True,
|
flatten_data=True,
|
||||||
@@ -27,6 +32,7 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
block=False):
|
block=False):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
if data:
|
||||||
if isinstance(data, Dataset):
|
if isinstance(data, Dataset):
|
||||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||||
elif isinstance(data, torch.utils.data.DataLoader):
|
elif isinstance(data, torch.utils.data.DataLoader):
|
||||||
@@ -43,8 +49,14 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
|
|
||||||
self.x_train = x
|
self.x_train = x
|
||||||
self.y_train = y
|
self.y_train = y
|
||||||
|
else:
|
||||||
|
self.x_train = None
|
||||||
|
self.y_train = None
|
||||||
|
|
||||||
self.title = title
|
self.title = title
|
||||||
|
self.xlabel = xlabel
|
||||||
|
self.ylabel = ylabel
|
||||||
|
self.legend_labels = legend_labels
|
||||||
self.fig = plt.figure(self.title)
|
self.fig = plt.figure(self.title)
|
||||||
self.cmap = cmap
|
self.cmap = cmap
|
||||||
self.border = border
|
self.border = border
|
||||||
@@ -63,14 +75,12 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def setup_ax(self, xlabel=None, ylabel=None):
|
def setup_ax(self):
|
||||||
ax = self.fig.gca()
|
ax = self.fig.gca()
|
||||||
ax.cla()
|
ax.cla()
|
||||||
ax.set_title(self.title)
|
ax.set_title(self.title)
|
||||||
if xlabel:
|
ax.set_xlabel(self.xlabel)
|
||||||
ax.set_xlabel("Data dimension 1")
|
ax.set_ylabel(self.ylabel)
|
||||||
if ylabel:
|
|
||||||
ax.set_ylabel("Data dimension 2")
|
|
||||||
if self.axis_off:
|
if self.axis_off:
|
||||||
ax.axis("off")
|
ax.axis("off")
|
||||||
return ax
|
return ax
|
||||||
@@ -113,42 +123,44 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
else:
|
else:
|
||||||
plt.show(block=self.block)
|
plt.show(block=self.block)
|
||||||
|
|
||||||
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
|
if not self.precheck(trainer):
|
||||||
|
return True
|
||||||
|
self.visualize(pl_module)
|
||||||
|
self.log_and_display(trainer, pl_module)
|
||||||
|
|
||||||
def on_train_end(self, trainer, pl_module):
|
def on_train_end(self, trainer, pl_module):
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
class VisGLVQ2D(Vis2DAbstract):
|
class VisGLVQ2D(Vis2DAbstract):
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
|
||||||
if not self.precheck(trainer):
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
def visualize(self, pl_module):
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
plabels = pl_module.prototype_labels
|
plabels = pl_module.prototype_labels
|
||||||
x_train, y_train = self.x_train, self.y_train
|
x_train, y_train = self.x_train, self.y_train
|
||||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
ax = self.setup_ax()
|
||||||
ylabel="Data dimension 2")
|
|
||||||
self.plot_data(ax, x_train, y_train)
|
|
||||||
self.plot_protos(ax, protos, plabels)
|
self.plot_protos(ax, protos, plabels)
|
||||||
x = np.vstack((x_train, protos))
|
if x_train is not None:
|
||||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
self.plot_data(ax, x_train, y_train)
|
||||||
|
mesh_input, xx, yy = mesh2d(np.vstack([x_train, protos]),
|
||||||
|
self.border, self.resolution)
|
||||||
|
else:
|
||||||
|
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||||
_components = pl_module.proto_layer._components
|
_components = pl_module.proto_layer._components
|
||||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||||
y_pred = pl_module.predict(mesh_input)
|
y_pred = pl_module.predict(mesh_input)
|
||||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||||
|
|
||||||
self.log_and_display(trainer, pl_module)
|
|
||||||
|
|
||||||
|
|
||||||
class VisSiameseGLVQ2D(Vis2DAbstract):
|
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||||
|
|
||||||
def __init__(self, *args, map_protos=True, **kwargs):
|
def __init__(self, *args, map_protos=True, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
self.map_protos = map_protos
|
self.map_protos = map_protos
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def visualize(self, pl_module):
|
||||||
if not self.precheck(trainer):
|
|
||||||
return True
|
|
||||||
|
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
plabels = pl_module.prototype_labels
|
plabels = pl_module.prototype_labels
|
||||||
x_train, y_train = self.x_train, self.y_train
|
x_train, y_train = self.x_train, self.y_train
|
||||||
@@ -175,18 +187,42 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
|||||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||||
|
|
||||||
self.log_and_display(trainer, pl_module)
|
|
||||||
|
class VisGMLVQ2D(Vis2DAbstract):
|
||||||
|
|
||||||
|
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.ev_proj = ev_proj
|
||||||
|
|
||||||
|
def visualize(self, pl_module):
|
||||||
|
protos = pl_module.prototypes
|
||||||
|
plabels = pl_module.prototype_labels
|
||||||
|
x_train, y_train = self.x_train, self.y_train
|
||||||
|
device = pl_module.device
|
||||||
|
omega = pl_module._omega.detach()
|
||||||
|
lam = omega @ omega.T
|
||||||
|
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||||
|
with torch.no_grad():
|
||||||
|
x_train = torch.Tensor(x_train).to(device)
|
||||||
|
x_train = x_train @ u
|
||||||
|
x_train = x_train.cpu().detach()
|
||||||
|
if self.show_protos:
|
||||||
|
with torch.no_grad():
|
||||||
|
protos = torch.Tensor(protos).to(device)
|
||||||
|
protos = protos @ u
|
||||||
|
protos = protos.cpu().detach()
|
||||||
|
ax = self.setup_ax()
|
||||||
|
self.plot_data(ax, x_train, y_train)
|
||||||
|
if self.show_protos:
|
||||||
|
self.plot_protos(ax, protos, plabels)
|
||||||
|
|
||||||
|
|
||||||
class VisCBC2D(Vis2DAbstract):
|
class VisCBC2D(Vis2DAbstract):
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
|
||||||
if not self.precheck(trainer):
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
def visualize(self, pl_module):
|
||||||
x_train, y_train = self.x_train, self.y_train
|
x_train, y_train = self.x_train, self.y_train
|
||||||
protos = pl_module.components
|
protos = pl_module.components
|
||||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
ax = self.setup_ax()
|
||||||
ylabel="Data dimension 2")
|
|
||||||
self.plot_data(ax, x_train, y_train)
|
self.plot_data(ax, x_train, y_train)
|
||||||
self.plot_protos(ax, protos, "w")
|
self.plot_protos(ax, protos, "w")
|
||||||
x = np.vstack((x_train, protos))
|
x = np.vstack((x_train, protos))
|
||||||
@@ -198,20 +234,15 @@ class VisCBC2D(Vis2DAbstract):
|
|||||||
|
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||||
|
|
||||||
self.log_and_display(trainer, pl_module)
|
|
||||||
|
|
||||||
|
|
||||||
class VisNG2D(Vis2DAbstract):
|
class VisNG2D(Vis2DAbstract):
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
|
||||||
if not self.precheck(trainer):
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
def visualize(self, pl_module):
|
||||||
x_train, y_train = self.x_train, self.y_train
|
x_train, y_train = self.x_train, self.y_train
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||||
|
|
||||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
ax = self.setup_ax()
|
||||||
ylabel="Data dimension 2")
|
|
||||||
self.plot_data(ax, x_train, y_train)
|
self.plot_data(ax, x_train, y_train)
|
||||||
self.plot_protos(ax, protos, "w")
|
self.plot_protos(ax, protos, "w")
|
||||||
|
|
||||||
@@ -225,10 +256,27 @@ class VisNG2D(Vis2DAbstract):
|
|||||||
"k-",
|
"k-",
|
||||||
)
|
)
|
||||||
|
|
||||||
self.log_and_display(trainer, pl_module)
|
|
||||||
|
class VisSpectralProtos(Vis2DAbstract):
|
||||||
|
|
||||||
|
def visualize(self, pl_module):
|
||||||
|
protos = pl_module.prototypes
|
||||||
|
plabels = pl_module.prototype_labels
|
||||||
|
ax = self.setup_ax()
|
||||||
|
colors = get_colors(vmax=max(plabels), vmin=min(plabels))
|
||||||
|
for p, pl in zip(protos, plabels):
|
||||||
|
ax.plot(p, c=colors[int(pl)])
|
||||||
|
if self.legend_labels:
|
||||||
|
handles = get_legend_handles(
|
||||||
|
colors,
|
||||||
|
self.legend_labels,
|
||||||
|
marker="lines",
|
||||||
|
)
|
||||||
|
ax.legend(handles=handles)
|
||||||
|
|
||||||
|
|
||||||
class VisImgComp(Vis2DAbstract):
|
class VisImgComp(Vis2DAbstract):
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
*args,
|
*args,
|
||||||
random_data=0,
|
random_data=0,
|
||||||
@@ -251,8 +299,6 @@ class VisImgComp(Vis2DAbstract):
|
|||||||
size=self.embedding_data,
|
size=self.embedding_data,
|
||||||
replace=False)
|
replace=False)
|
||||||
data = self.x_train[ind]
|
data = self.x_train[ind]
|
||||||
# print(f"{data.shape=}")
|
|
||||||
# print(f"{self.y_train[ind].shape=}")
|
|
||||||
tb.add_embedding(data.view(len(ind), -1),
|
tb.add_embedding(data.view(len(ind), -1),
|
||||||
label_img=data,
|
label_img=data,
|
||||||
global_step=None,
|
global_step=None,
|
||||||
@@ -283,14 +329,9 @@ class VisImgComp(Vis2DAbstract):
|
|||||||
dataformats=self.dataformats,
|
dataformats=self.dataformats,
|
||||||
)
|
)
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def visualize(self, pl_module):
|
||||||
if not self.precheck(trainer):
|
|
||||||
return True
|
|
||||||
|
|
||||||
if self.show:
|
if self.show:
|
||||||
components = pl_module.components
|
components = pl_module.components
|
||||||
grid = torchvision.utils.make_grid(components,
|
grid = torchvision.utils.make_grid(components,
|
||||||
nrow=self.num_columns)
|
nrow=self.num_columns)
|
||||||
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
|
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
|
||||||
|
|
||||||
self.log_and_display(trainer, pl_module)
|
|
||||||
|
23
setup.cfg
23
setup.cfg
@@ -1,8 +1,23 @@
|
|||||||
[isort]
|
|
||||||
profile = hug
|
|
||||||
src_paths = isort, test
|
|
||||||
|
|
||||||
[yapf]
|
[yapf]
|
||||||
based_on_style = pep8
|
based_on_style = pep8
|
||||||
spaces_before_comment = 2
|
spaces_before_comment = 2
|
||||||
split_before_logical_operator = true
|
split_before_logical_operator = true
|
||||||
|
|
||||||
|
[pylint]
|
||||||
|
disable =
|
||||||
|
too-many-arguments,
|
||||||
|
too-few-public-methods,
|
||||||
|
fixme,
|
||||||
|
|
||||||
|
|
||||||
|
[pycodestyle]
|
||||||
|
max-line-length = 79
|
||||||
|
|
||||||
|
[isort]
|
||||||
|
profile = hug
|
||||||
|
src_paths = isort, test
|
||||||
|
multi_line_output = 3
|
||||||
|
include_trailing_comma = True
|
||||||
|
force_grid_wrap = 3
|
||||||
|
use_parentheses = True
|
||||||
|
line_length = 79
|
||||||
|
12
setup.py
12
setup.py
@@ -22,8 +22,8 @@ with open("README.md", "r") as fh:
|
|||||||
long_description = fh.read()
|
long_description = fh.read()
|
||||||
|
|
||||||
INSTALL_REQUIRES = [
|
INSTALL_REQUIRES = [
|
||||||
"prototorch>=0.6.0",
|
"prototorch>=0.7.3",
|
||||||
"pytorch_lightning>=1.3.5",
|
"pytorch_lightning>=1.6.0",
|
||||||
"torchmetrics",
|
"torchmetrics",
|
||||||
]
|
]
|
||||||
CLI = [
|
CLI = [
|
||||||
@@ -37,6 +37,7 @@ DOCS = [
|
|||||||
"recommonmark",
|
"recommonmark",
|
||||||
"sphinx",
|
"sphinx",
|
||||||
"nbsphinx",
|
"nbsphinx",
|
||||||
|
"ipykernel",
|
||||||
"sphinx_rtd_theme",
|
"sphinx_rtd_theme",
|
||||||
"sphinxcontrib-katex",
|
"sphinxcontrib-katex",
|
||||||
"sphinxcontrib-bibtex",
|
"sphinxcontrib-bibtex",
|
||||||
@@ -53,7 +54,7 @@ ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
|
|||||||
|
|
||||||
setup(
|
setup(
|
||||||
name=safe_name("prototorch_" + PLUGIN_NAME),
|
name=safe_name("prototorch_" + PLUGIN_NAME),
|
||||||
version="0.2.0",
|
version="0.5.0",
|
||||||
description="Pre-packaged prototype-based "
|
description="Pre-packaged prototype-based "
|
||||||
"machine learning models using ProtoTorch and PyTorch-Lightning.",
|
"machine learning models using ProtoTorch and PyTorch-Lightning.",
|
||||||
long_description=long_description,
|
long_description=long_description,
|
||||||
@@ -63,7 +64,7 @@ setup(
|
|||||||
url=PROJECT_URL,
|
url=PROJECT_URL,
|
||||||
download_url=DOWNLOAD_URL,
|
download_url=DOWNLOAD_URL,
|
||||||
license="MIT",
|
license="MIT",
|
||||||
python_requires=">=3.9",
|
python_requires=">=3.7",
|
||||||
install_requires=INSTALL_REQUIRES,
|
install_requires=INSTALL_REQUIRES,
|
||||||
extras_require={
|
extras_require={
|
||||||
"dev": DEV,
|
"dev": DEV,
|
||||||
@@ -79,7 +80,10 @@ setup(
|
|||||||
"Intended Audience :: Science/Research",
|
"Intended Audience :: Science/Research",
|
||||||
"License :: OSI Approved :: MIT License",
|
"License :: OSI Approved :: MIT License",
|
||||||
"Natural Language :: English",
|
"Natural Language :: English",
|
||||||
|
"Programming Language :: Python :: 3.10",
|
||||||
"Programming Language :: Python :: 3.9",
|
"Programming Language :: Python :: 3.9",
|
||||||
|
"Programming Language :: Python :: 3.8",
|
||||||
|
"Programming Language :: Python :: 3.7",
|
||||||
"Operating System :: OS Independent",
|
"Operating System :: OS Independent",
|
||||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||||
"Topic :: Software Development :: Libraries",
|
"Topic :: Software Development :: Libraries",
|
||||||
|
@@ -1,14 +0,0 @@
|
|||||||
"""prototorch.models test suite."""
|
|
||||||
|
|
||||||
import unittest
|
|
||||||
|
|
||||||
|
|
||||||
class TestDummy(unittest.TestCase):
|
|
||||||
def setUp(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def test_dummy(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def tearDown(self):
|
|
||||||
pass
|
|
@@ -1,11 +1,27 @@
|
|||||||
#! /bin/bash
|
#! /bin/bash
|
||||||
|
|
||||||
|
|
||||||
|
# Read Flags
|
||||||
|
gpu=0
|
||||||
|
while [ -n "$1" ]; do
|
||||||
|
case "$1" in
|
||||||
|
--gpu) gpu=1;;
|
||||||
|
-g) gpu=1;;
|
||||||
|
*) path=$1;;
|
||||||
|
esac
|
||||||
|
shift
|
||||||
|
done
|
||||||
|
|
||||||
|
python --version
|
||||||
|
echo "Using GPU: " $gpu
|
||||||
|
|
||||||
|
# Loop
|
||||||
failed=0
|
failed=0
|
||||||
|
|
||||||
for example in $(find $1 -maxdepth 1 -name "*.py")
|
for example in $(find $path -maxdepth 1 -name "*.py")
|
||||||
do
|
do
|
||||||
echo -n "$x" $example '... '
|
echo -n "$x" $example '... '
|
||||||
export DISPLAY= && python $example --fast_dev_run 1 &> run_log.txt
|
export DISPLAY= && python $example --fast_dev_run 1 --gpus $gpu &> run_log.txt
|
||||||
if [[ $? -ne 0 ]]; then
|
if [[ $? -ne 0 ]]; then
|
||||||
echo "FAILED!!"
|
echo "FAILED!!"
|
||||||
cat run_log.txt
|
cat run_log.txt
|
||||||
|
195
tests/test_models.py
Normal file
195
tests/test_models.py
Normal file
@@ -0,0 +1,195 @@
|
|||||||
|
"""prototorch.models test suite."""
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def test_glvq_model_build():
|
||||||
|
model = pt.models.GLVQ(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_glvq1_model_build():
|
||||||
|
model = pt.models.GLVQ1(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_glvq21_model_build():
|
||||||
|
model = pt.models.GLVQ1(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_gmlvq_model_build():
|
||||||
|
model = pt.models.GMLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 2,
|
||||||
|
"latent_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_grlvq_model_build():
|
||||||
|
model = pt.models.GRLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_gtlvq_model_build():
|
||||||
|
model = pt.models.GTLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 4,
|
||||||
|
"latent_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_lgmlvq_model_build():
|
||||||
|
model = pt.models.LGMLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 4,
|
||||||
|
"latent_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_image_glvq_model_build():
|
||||||
|
model = pt.models.ImageGLVQ(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(16),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_image_gmlvq_model_build():
|
||||||
|
model = pt.models.ImageGMLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 16,
|
||||||
|
"latent_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(16),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_image_gtlvq_model_build():
|
||||||
|
model = pt.models.ImageGMLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 16,
|
||||||
|
"latent_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(16),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_siamese_glvq_model_build():
|
||||||
|
model = pt.models.SiameseGLVQ(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(4),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_siamese_gmlvq_model_build():
|
||||||
|
model = pt.models.SiameseGMLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 4,
|
||||||
|
"latent_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(4),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_siamese_gtlvq_model_build():
|
||||||
|
model = pt.models.SiameseGTLVQ(
|
||||||
|
{
|
||||||
|
"distribution": (3, 2),
|
||||||
|
"input_dim": 4,
|
||||||
|
"latent_dim": 2,
|
||||||
|
},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(4),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_knn_model_build():
|
||||||
|
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||||
|
model = pt.models.KNN(dict(k=3), data=train_ds)
|
||||||
|
|
||||||
|
|
||||||
|
def test_lvq1_model_build():
|
||||||
|
model = pt.models.LVQ1(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_lvq21_model_build():
|
||||||
|
model = pt.models.LVQ21(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_median_lvq_model_build():
|
||||||
|
model = pt.models.MedianLVQ(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_celvq_model_build():
|
||||||
|
model = pt.models.CELVQ(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_rslvq_model_build():
|
||||||
|
model = pt.models.RSLVQ(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_slvq_model_build():
|
||||||
|
model = pt.models.SLVQ(
|
||||||
|
{"distribution": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_growing_neural_gas_model_build():
|
||||||
|
model = pt.models.GrowingNeuralGas(
|
||||||
|
{"num_prototypes": 5},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_kohonen_som_model_build():
|
||||||
|
model = pt.models.KohonenSOM(
|
||||||
|
{"shape": (3, 2)},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_neural_gas_model_build():
|
||||||
|
model = pt.models.NeuralGas(
|
||||||
|
{"num_prototypes": 5},
|
||||||
|
prototypes_initializer=pt.initializers.RNCI(2),
|
||||||
|
)
|
Reference in New Issue
Block a user