Compare commits

..

5 Commits

Author SHA1 Message Date
julius
adafb49985
masks -> ParameterList(requires_grad=False) 2023-11-07 19:17:43 +01:00
julius
78f8b6cc00
remove accidental LiteralString import 2023-11-07 18:52:51 +01:00
julius
c6f718a1d4
GMLMLVQ: allow for 2 or more omega layers 2023-11-07 16:44:13 +01:00
julius
1786031b4e
adjust omega_matrix property 2023-11-06 16:32:57 +01:00
julius
824dfced92
Implement a prototypical 2-layer version of GMLVQ 2023-11-03 14:59:00 +01:00

View File

@ -1,13 +1,15 @@
"""Models based on the GLVQ framework.""" """Models based on the GLVQ framework."""
import torch import torch
from numpy.typing import NDArray
from prototorch.core.competitions import wtac from prototorch.core.competitions import wtac
from prototorch.core.distances import ( from prototorch.core.distances import (
ML_omega_distance,
lomega_distance, lomega_distance,
omega_distance, omega_distance,
squared_euclidean_distance, squared_euclidean_distance,
) )
from prototorch.core.initializers import EyeLinearTransformInitializer from prototorch.core.initializers import LLTI, EyeLinearTransformInitializer
from prototorch.core.losses import ( from prototorch.core.losses import (
GLVQLoss, GLVQLoss,
lvq1_loss, lvq1_loss,
@ -15,7 +17,7 @@ from prototorch.core.losses import (
) )
from prototorch.core.transforms import LinearTransform from prototorch.core.transforms import LinearTransform
from prototorch.nn.wrappers import LambdaLayer, LossLayer from prototorch.nn.wrappers import LambdaLayer, LossLayer
from torch.nn.parameter import Parameter from torch.nn import Parameter, ParameterList
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
from .extras import ltangent_distance, orthogonalization from .extras import ltangent_distance, orthogonalization
@ -45,26 +47,28 @@ class GLVQ(SupervisedPrototypeModel):
def initialize_prototype_win_ratios(self): def initialize_prototype_win_ratios(self):
self.register_buffer( self.register_buffer(
"prototype_win_ratios", "prototype_win_ratios", torch.zeros(self.num_prototypes, device=self.device)
torch.zeros(self.num_prototypes, device=self.device)) )
def on_train_epoch_start(self): def on_train_epoch_start(self):
self.initialize_prototype_win_ratios() self.initialize_prototype_win_ratios()
def log_prototype_win_ratios(self, distances): def log_prototype_win_ratios(self, distances):
batch_size = len(distances) batch_size = len(distances)
prototype_wc = torch.zeros(self.num_prototypes, prototype_wc = torch.zeros(
dtype=torch.long, self.num_prototypes, dtype=torch.long, device=self.device
device=self.device) )
wi, wc = torch.unique(distances.min(dim=-1).indices, wi, wc = torch.unique(
sorted=True, distances.min(dim=-1).indices, sorted=True, return_counts=True
return_counts=True) )
prototype_wc[wi] = wc prototype_wc[wi] = wc
prototype_wr = prototype_wc / batch_size prototype_wr = prototype_wc / batch_size
self.prototype_win_ratios = torch.vstack([ self.prototype_win_ratios = torch.vstack(
[
self.prototype_win_ratios, self.prototype_win_ratios,
prototype_wr, prototype_wr,
]) ]
)
def shared_step(self, batch, batch_idx): def shared_step(self, batch, batch_idx):
x, y = batch x, y = batch
@ -109,11 +113,9 @@ class SiameseGLVQ(GLVQ):
""" """
def __init__(self, def __init__(
hparams, self, hparams, backbone=torch.nn.Identity(), both_path_gradients=False, **kwargs
backbone=torch.nn.Identity(), ):
both_path_gradients=False,
**kwargs):
distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance) distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs) super().__init__(hparams, distance_fn=distance_fn, **kwargs)
self.backbone = backbone self.backbone = backbone
@ -175,6 +177,7 @@ class GRLVQ(SiameseGLVQ):
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise. TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
""" """
_relevances: torch.Tensor _relevances: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
@ -185,8 +188,7 @@ class GRLVQ(SiameseGLVQ):
self.register_parameter("_relevances", Parameter(relevances)) self.register_parameter("_relevances", Parameter(relevances))
# Override the backbone # Override the backbone
self.backbone = LambdaLayer(self._apply_relevances, self.backbone = LambdaLayer(self._apply_relevances, name="relevance scaling")
name="relevance scaling")
def _apply_relevances(self, x): def _apply_relevances(self, x):
return x @ torch.diag(self._relevances) return x @ torch.diag(self._relevances)
@ -210,8 +212,9 @@ class SiameseGMLVQ(SiameseGLVQ):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Override the backbone # Override the backbone
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get(
EyeLinearTransformInitializer()) "omega_initializer", EyeLinearTransformInitializer()
)
self.backbone = LinearTransform( self.backbone = LinearTransform(
self.hparams["input_dim"], self.hparams["input_dim"],
self.hparams["latent_dim"], self.hparams["latent_dim"],
@ -229,6 +232,49 @@ class SiameseGMLVQ(SiameseGLVQ):
return lam.detach().cpu() return lam.detach().cpu()
class GMLMLVQ(GLVQ):
"""Generalized Multi-Layer Matrix Learning Vector Quantization.
Masks are applied to the omega layers to achieve sparsity and constrain
learning to certain items of each omega.
Implemented as a regular GLVQ network that simply uses a different distance
function. This makes it easier to implement a localized variant.
"""
# Parameters
_omegas: list[torch.Tensor]
masks: list[torch.Tensor]
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", ML_omega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
# Additional parameters
self._masks = ParameterList(
[Parameter(mask, requires_grad=False) for mask in kwargs.get("masks")]
)
self._omegas = ParameterList([LLTI(mask).generate(1, 1) for mask in self._masks])
@property
def omega_matrices(self):
return [_omega.detach().cpu() for _omega in self._omegas]
@property
def lambda_matrix(self):
# TODO update to respective lambda calculation rules.
omega = self._omega.detach() # (input_dim, latent_dim)
lam = omega @ omega.T
return lam.detach().cpu()
def compute_distances(self, x):
protos, _ = self.proto_layer()
distances = self.distance_layer(x, protos, self._omegas, self._masks)
return distances
def extra_repr(self):
return f"(omegas): (shapes: {[tuple(_omega.shape) for _omega in self._omegas]})"
class GMLVQ(GLVQ): class GMLVQ(GLVQ):
"""Generalized Matrix Learning Vector Quantization. """Generalized Matrix Learning Vector Quantization.
@ -245,10 +291,12 @@ class GMLVQ(GLVQ):
super().__init__(hparams, distance_fn=distance_fn, **kwargs) super().__init__(hparams, distance_fn=distance_fn, **kwargs)
# Additional parameters # Additional parameters
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get(
EyeLinearTransformInitializer()) "omega_initializer", EyeLinearTransformInitializer()
omega = omega_initializer.generate(self.hparams["input_dim"], )
self.hparams["latent_dim"]) omega = omega_initializer.generate(
self.hparams["input_dim"], self.hparams["latent_dim"]
)
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
@property @property