Compare commits

...

64 Commits

Author SHA1 Message Date
Alexander Engelsberger
d4bf6dbbe9
build: bump version 0.7.0 → 0.7.1 2023-10-25 15:56:53 +02:00
Alexander Engelsberger
c99fdb436c
ci: update action to pyproject toml workflow 2023-10-25 15:56:19 +02:00
Alexander Engelsberger
28ac5f5ed9
build: bump version 0.6.0 → 0.7.0 2023-10-25 15:19:04 +02:00
Alexander Engelsberger
b7f510a9fe
chore: update bumpversion config 2023-10-25 15:18:45 +02:00
Alexander Engelsberger
781ef93b06
ci: remove Python 3.12 2023-10-25 15:09:14 +02:00
Alexander Engelsberger
072e61b3cd
ci: Add Python 3.12 2023-10-25 15:04:05 +02:00
Alexander Engelsberger
71167a8f77
chore: remove optimizer_idx from all steps 2023-10-25 15:03:13 +02:00
Alexander Engelsberger
60990f42d2
fix: update import in tests 2023-06-20 21:18:28 +02:00
Alexander Engelsberger
1e83c439f7
ci: Trigger example test 2023-06-20 19:29:59 +02:00
Alexander Engelsberger
cbbbbeda98
fix: setuptools configuration 2023-06-20 19:25:35 +02:00
Alexander Engelsberger
1b5093627e
build: bump version 0.5.4 → 0.6.0 2023-06-20 18:50:03 +02:00
Alexander Engelsberger
497da90f9c
chore: small changes to configuration 2023-06-20 18:49:57 +02:00
Alexander Engelsberger
2a665e220f
fix: use multiclass accuracy by default 2023-06-20 18:30:18 +02:00
Alexander Engelsberger
4cd6aee330
chore: replace config by pyproject.toml 2023-06-20 18:30:05 +02:00
Alexander Engelsberger
634ef86a2c
fix: example test fixed 2023-06-20 17:42:36 +02:00
Alexander Engelsberger
72e9587a10
fix: remove removed CLI syntax from examples 2023-06-20 17:30:21 +02:00
Alexander Engelsberger
f5e1edf31f
ci: upgrade workflows 2023-06-20 16:39:13 +02:00
Alexander Engelsberger
5e5675d12e
ci: upgrade pre-commit config 2023-06-20 16:37:11 +02:00
Alexander Engelsberger
16f410e809
fix: style fixes 2023-03-09 15:59:49 +01:00
Alexander Engelsberger
46dfb82371
Fix: saving GMLVQ and GRLVQ fixed 2023-03-09 15:50:13 +01:00
Alexander Engelsberger
87fa3f0729
build: bump version 0.5.3 → 0.5.4 2023-03-02 17:29:54 +00:00
Alexander Engelsberger
08db94d507
fix: fix entrypoint configuration 2023-03-02 17:29:23 +00:00
Alexander Engelsberger
8ecf9948b2
build: bump version 0.5.2 → 0.5.3 2023-03-02 17:24:11 +00:00
Alexander Engelsberger
c5f0b86114
chore: upgrade pre commit 2023-03-02 17:23:41 +00:00
Alexander Engelsberger
7506614ada
fix: Update dependency versions 2023-03-02 17:05:39 +00:00
Alexander Engelsberger
fcd944d3ff build: bump version 0.5.1 → 0.5.2 2022-06-01 14:25:44 +02:00
Alexander Engelsberger
054720dd7b fix(hotfix): Protobuf error workaround 2022-06-01 14:14:57 +02:00
Alexander Engelsberger
d16a0de202
build: bump version 0.5.0 → 0.5.1 2022-05-17 12:04:08 +02:00
Alexander Engelsberger
76fea3f881
chore: update all examples to pytorch 1.6 2022-05-17 12:03:43 +02:00
Alexander Engelsberger
c00513ae0d
chore: minor updates and version updates 2022-05-17 12:00:52 +02:00
Alexander Engelsberger
bccef8bef0
chore: replace relative imports 2022-05-16 11:12:53 +02:00
Alexander Engelsberger
29ee326b85
ci: Update PreCommit hooks 2022-05-16 11:11:48 +02:00
Jensun Ravichandran
055568dc86
fix: glvq_iris example works again 2022-05-09 17:33:52 +02:00
Alexander Engelsberger
3a7328e290 chore: small changes 2022-04-27 10:37:12 +02:00
Alexander Engelsberger
d6629c8792 build: bump version 0.4.1 → 0.5.0 2022-04-27 10:28:06 +02:00
Alexander Engelsberger
ef65bd3789 chore: update prototorch dependency 2022-04-27 09:50:48 +02:00
Alexander Engelsberger
d096eba2c9 chore: update pytorch lightning dependency 2022-04-27 09:39:00 +02:00
Alexander Engelsberger
dd34c57e2e ci: fix github action python version 2022-04-27 09:30:07 +02:00
Alexander Engelsberger
5911f4dd90 chore: fix errors for pytorch_lightning>1.6 2022-04-27 09:25:42 +02:00
Alexander Engelsberger
dbfe315f4f ci: add python 3.10 to tests 2022-04-27 09:24:34 +02:00
Jensun Ravichandran
9c90c902dc
fix: correct typo 2022-04-04 21:54:04 +02:00
Jensun Ravichandran
7d3f59e54b
test: add unit tests 2022-03-30 15:12:33 +02:00
Jensun Ravichandran
9da47b1dba
fix: CBC example works again 2022-03-30 15:10:06 +02:00
Alexander Engelsberger
41f0e77fc9 fix: siameseGLVQ checks requires_grad of backbone
Necessary for different optimizer runs
2022-03-29 17:08:40 +02:00
Jensun Ravichandran
fab786a07e
fix: rename hparam output_dimlatent_dim in SiameseGMLVQ 2022-03-29 15:24:42 +02:00
Jensun Ravichandran
40bd7ed380
docs: update tutorial notebook 2022-03-29 15:04:05 +02:00
Jensun Ravichandran
4941c2b89d
feat: data argument optional in some visualizers 2022-03-29 11:26:22 +02:00
Jensun Ravichandran
ce14dec7e9
feat: add VisSpectralProtos 2022-03-10 15:24:44 +01:00
Jensun Ravichandran
b31c8cc707
feat: add xlabel and ylabel arguments to visualizers 2022-03-09 13:59:19 +01:00
Jensun Ravichandran
e21e6c7e02
docs: update tutorial notebook 2022-02-15 14:38:53 +01:00
Jensun Ravichandran
dd696ea1e0
fix: update hparams.distribution as it changes during training 2022-02-02 21:53:03 +01:00
Jensun Ravichandran
15e7232747
fix: ignore prototype_win_ratios by loading with strict=False 2022-02-02 21:52:01 +01:00
Jensun Ravichandran
197b728c63
feat: add visualize method to visualization callbacks
All visualization callbacks now contain a `visualize` method that takes an
appropriate PyTorchLightning Module and visualizes it without the need for a
Trainer. This is to encourage users to perform one-off visualizations after
training.
2022-02-02 21:45:44 +01:00
Jensun Ravichandran
98892afee0
chore: add example for saving/loading models from checkpoints 2022-02-02 19:02:26 +01:00
Alexander Engelsberger
d5855dbe97
fix: GLVQ can now be restored from checkpoint 2022-02-02 16:17:11 +01:00
Alexander Engelsberger
75a39f5b03
build: bump version 0.4.0 → 0.4.1 2022-01-11 18:29:55 +01:00
Alexander Engelsberger
1a0e697b27
Merge branch 'dev' into main 2022-01-11 18:29:32 +01:00
Alexander Engelsberger
1a17193b35
ci: add github actions (#16)
* chore: update pre-commit versions

* ci: remove old configurations

* ci: copy workflow from prototorch

* ci: run precommit for all files

* ci: add examples CPU test

* ci(test): failing example test

* ci: fix workflow definition

* ci(test): repeat failing example test

* ci: fix workflow definition

* ci(test): repeat failing example test II

* ci: fix test command

* ci: cleanup example test

* ci: remove travis badge
2022-01-11 18:28:50 +01:00
Alexander Engelsberger
aaa3c51e0a
build: bump version 0.3.0 → 0.4.0 2021-12-09 15:58:16 +01:00
Jensun Ravichandran
62c5974a85
fix: correct typo in example script 2021-11-17 15:01:38 +01:00
Jensun Ravichandran
1d26226a2f
fix(warning): specify dimension explicitly when calling softmin 2021-11-16 10:19:31 +01:00
Christoph
4232d0ed2a fix: spelling issues for previous commits 2021-11-15 11:43:39 +01:00
Christoph
a9edf06507 feat: ImageGTLVQ and SiameseGTLVQ with examples 2021-11-15 11:43:39 +01:00
Christoph
d3bb430104 feat: gtlvq with examples 2021-11-15 11:43:39 +01:00
46 changed files with 2190 additions and 825 deletions

View File

@ -1,13 +1,13 @@
[bumpversion] [bumpversion]
current_version = 0.3.0 current_version = 0.7.1
commit = True commit = True
tag = True tag = True
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+) parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
serialize = {major}.{minor}.{patch} serialize = {major}.{minor}.{patch}
message = build: bump version {current_version} → {new_version} message = build: bump version {current_version} → {new_version}
[bumpversion:file:setup.py] [bumpversion:file:pyproject.toml]
[bumpversion:file:./prototorch/models/__init__.py] [bumpversion:file:./src/prototorch/models/__init__.py]
[bumpversion:file:./docs/source/conf.py] [bumpversion:file:./docs/source/conf.py]

View File

@ -1,15 +0,0 @@
# To validate the contents of your configuration file
# run the following command in the folder where the configuration file is located:
# codacy-analysis-cli validate-configuration --directory `pwd`
# To analyse, run:
# codacy-analysis-cli analyse --tool remark-lint --directory `pwd`
---
engines:
pylintpython3:
exclude_paths:
- config/engines.yml
remark-lint:
exclude_paths:
- config/engines.yml
exclude_paths:
- 'tests/**'

View File

@ -1,2 +0,0 @@
comment:
require_changes: yes

25
.github/workflows/examples.yml vendored Normal file
View File

@ -0,0 +1,25 @@
# Thi workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: examples
on:
push:
paths:
- "examples/**.py"
jobs:
cpu:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Run examples
run: |
./tests/test_examples.sh examples/

75
.github/workflows/pythonapp.yml vendored Normal file
View File

@ -0,0 +1,75 @@
# This workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: tests
on:
push:
pull_request:
branches: [master]
jobs:
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- uses: pre-commit/action@v3.0.0
compatibility:
needs: style
strategy:
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, windows-latest]
exclude:
- os: windows-latest
python-version: "3.8"
- os: windows-latest
python-version: "3.9"
- os: windows-latest
python-version: "3.10"
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
- name: Test with pytest
run: |
pytest
publish_pypi:
if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags')
needs: compatibility
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[all]
pip install build
- name: Build package
run: python -m build . -C verbose
- name: Publish a Python distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@ -3,7 +3,7 @@
repos: repos:
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.0.1 rev: v4.4.0
hooks: hooks:
- id: trailing-whitespace - id: trailing-whitespace
- id: end-of-file-fixer - id: end-of-file-fixer
@ -13,36 +13,37 @@ repos:
- id: check-case-conflict - id: check-case-conflict
- repo: https://github.com/myint/autoflake - repo: https://github.com/myint/autoflake
rev: v1.4 rev: v2.1.1
hooks: hooks:
- id: autoflake - id: autoflake
- repo: http://github.com/PyCQA/isort - repo: http://github.com/PyCQA/isort
rev: 5.8.0 rev: 5.12.0
hooks: hooks:
- id: isort - id: isort
- repo: https://github.com/pre-commit/mirrors-mypy - repo: https://github.com/pre-commit/mirrors-mypy
rev: v0.902 rev: v1.3.0
hooks: hooks:
- id: mypy - id: mypy
files: prototorch files: prototorch
additional_dependencies: [types-pkg_resources] additional_dependencies: [types-pkg_resources]
- repo: https://github.com/pre-commit/mirrors-yapf - repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.31.0 rev: v0.32.0
hooks: hooks:
- id: yapf - id: yapf
additional_dependencies: ["toml"]
- repo: https://github.com/pre-commit/pygrep-hooks - repo: https://github.com/pre-commit/pygrep-hooks
rev: v1.9.0 rev: v1.10.0
hooks: hooks:
- id: python-use-type-annotations - id: python-use-type-annotations
- id: python-no-log-warn - id: python-no-log-warn
- id: python-check-blanket-noqa - id: python-check-blanket-noqa
- repo: https://github.com/asottile/pyupgrade - repo: https://github.com/asottile/pyupgrade
rev: v2.19.4 rev: v3.7.0
hooks: hooks:
- id: pyupgrade - id: pyupgrade

View File

@ -1,44 +0,0 @@
dist: bionic
sudo: false
language: python
python:
- 3.9
- 3.8
- 3.7
- 3.6
cache:
directories:
- "$HOME/.cache/pip"
- "./tests/artifacts"
- "$HOME/datasets"
install:
- pip install git+git://github.com/si-cim/prototorch@dev --progress-bar off
- pip install .[all] --progress-bar off
script:
- coverage run -m pytest
- ./tests/test_examples.sh examples/
after_success:
- bash <(curl -s https://codecov.io/bash)
# Publish on PyPI
jobs:
include:
- stage: build
python: 3.9
script: echo "Starting Pypi build"
deploy:
provider: pypi
username: __token__
distributions: "sdist bdist_wheel"
password:
secure: PDoASdYdVlt1aIROYilAsCW6XpBs/TDel0CSptDzX0CI7i4+ksEW6Jk0JyL58bQt7V4F8PeGty4A8SODzAUIk2d8sty5RI4VJjvXZFCXlUsW+JGUN3EvWNqJLnwN8TDxgu2ENao37GUh0dC6pL8b6bVDGeOLaY1E/YR1jimmTJuxxjKjBIU8ByqTNBnC3rzybMTPU3nRoOM/WMQUyReHrPoUJj685sLqrLruhAqhiYsPbotP8xY6i8+KBbhp5vgiARV2+LkbeGcYZwozCzrEqPKY7YIfVPh895cw0v4NRyFwK1P2jyyIt22Z9Ni0Uy1J5/Qp9Sv6mBPeGjm3pnpDCQyS+2bNIDaj08KUYTIo1mC/Jcu4jQgppZEF+oey9q1tgGo+/JhsTeERKV9BoPF5HDiRArU1s5aWJjFnCsHfu+W1XqX8bwN3aTYsEIaApT3/irc6XyFJIfMN82+z+lUcZ4Y1yAHT3nH1Vif+pZYZB0UOSGrHwuI/UayjKzbCzHMuHWylWB/9ehd4o4YVp6iubVHc7Sj0KQkwBgwgl6TvwNcUuFsplFabCxmX0mVcavXsWiOBc+ivPmU6574zGj0JcEk5ghVgnKH+QS96aVrKOzegwbl4O13jY8dJp+/zgXl0gJOvRKr4BhuBJKcBaMQHdSKUChVsJJtqDyt59GvWcbg=
on:
tags: true
skip_existing: true
# The password is encrypted with:
# `cd prototorch && travis encrypt your-pypi-api-token --add deploy.password`
# See https://docs.travis-ci.com/user/deployment/pypi and
# https://github.com/travis-ci/travis.rb#installation
# for more details
# Note: The encrypt command does not work well in ZSH.

View File

@ -1,6 +1,5 @@
# ProtoTorch Models # ProtoTorch Models
[![Build Status](https://api.travis-ci.com/si-cim/prototorch_models.svg?branch=main)](https://travis-ci.com/github/si-cim/prototorch_models)
[![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch_models?color=yellow&label=version)](https://github.com/si-cim/prototorch_models/releases) [![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/si-cim/prototorch_models?color=yellow&label=version)](https://github.com/si-cim/prototorch_models/releases)
[![PyPI](https://img.shields.io/pypi/v/prototorch_models)](https://pypi.org/project/prototorch_models/) [![PyPI](https://img.shields.io/pypi/v/prototorch_models)](https://pypi.org/project/prototorch_models/)
[![GitHub license](https://img.shields.io/github/license/si-cim/prototorch_models)](https://github.com/si-cim/prototorch_models/blob/master/LICENSE) [![GitHub license](https://img.shields.io/github/license/si-cim/prototorch_models)](https://github.com/si-cim/prototorch_models/blob/master/LICENSE)

View File

@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
# The full version, including alpha/beta/rc tags # The full version, including alpha/beta/rc tags
# #
release = "0.3.0" release = "0.7.1"
# -- General configuration --------------------------------------------------- # -- General configuration ---------------------------------------------------

View File

@ -2,223 +2,252 @@
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "7ac5eff0",
"metadata": {},
"source": [ "source": [
"# A short tutorial for the `prototorch.models` plugin" "# A short tutorial for the `prototorch.models` plugin"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "beb83780",
"metadata": {},
"source": [ "source": [
"## Introduction" "## Introduction"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "43b74278",
"metadata": {},
"source": [ "source": [
"This is a short tutorial for the [models](https://github.com/si-cim/prototorch_models) plugin of the [ProtoTorch](https://github.com/si-cim/prototorch) framework.\n", "This is a short tutorial for the [models](https://github.com/si-cim/prototorch_models) plugin of the [ProtoTorch](https://github.com/si-cim/prototorch) framework. This is by no means a comprehensive look at all the features that the framework has to offer, but it should help you get up and running.\n",
"\n", "\n",
"[ProtoTorch](https://github.com/si-cim/prototorch) provides [torch.nn](https://pytorch.org/docs/stable/nn.html) modules and utilities to implement prototype-based models. However, it is up to the user to put these modules together into models and handle the training of these models. Expert machine-learning practioners and researchers sometimes prefer this level of control. However, this leads to a lot of boilerplate code that is essentially same across many projects. Needless to say, this is a source of a lot of frustration. [PyTorch-Lightning](https://pytorch-lightning.readthedocs.io/en/latest/) is a framework that helps avoid a lot of this frustration by handling the boilerplate code for you so you don't have to reinvent the wheel every time you need to implement a new model.\n", "[ProtoTorch](https://github.com/si-cim/prototorch) provides [torch.nn](https://pytorch.org/docs/stable/nn.html) modules and utilities to implement prototype-based models. However, it is up to the user to put these modules together into models and handle the training of these models. Expert machine-learning practioners and researchers sometimes prefer this level of control. However, this leads to a lot of boilerplate code that is essentially same across many projects. Needless to say, this is a source of a lot of frustration. [PyTorch-Lightning](https://pytorch-lightning.readthedocs.io/en/latest/) is a framework that helps avoid a lot of this frustration by handling the boilerplate code for you so you don't have to reinvent the wheel every time you need to implement a new model.\n",
"\n", "\n",
"With the [prototorch.models](https://github.com/si-cim/prototorch_models) plugin, we've gone one step further and pre-packaged commonly used prototype-models like GMLVQ as [Lightning-Modules](https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.lightning.html?highlight=lightning%20module#pytorch_lightning.core.lightning.LightningModule). With only a few lines to code, it is now possible to build and train prototype-models. It quite simply cannot get any simpler than this." "With the [prototorch.models](https://github.com/si-cim/prototorch_models) plugin, we've gone one step further and pre-packaged commonly used prototype-models like GMLVQ as [Lightning-Modules](https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.lightning.html?highlight=lightning%20module#pytorch_lightning.core.lightning.LightningModule). With only a few lines to code, it is now possible to build and train prototype-models. It quite simply cannot get any simpler than this."
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "4e5d1fad",
"metadata": {},
"source": [ "source": [
"## Basics" "## Basics"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "1244b66b",
"metadata": {},
"source": [ "source": [
"First things first. When working with the models plugin, you'll probably need `torch`, `prototorch` and `pytorch_lightning`. So, we recommend that you import all three like so:" "First things first. When working with the models plugin, you'll probably need `torch`, `prototorch` and `pytorch_lightning`. So, we recommend that you import all three like so:"
], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "dcb88e8a",
"metadata": {},
"outputs": [],
"source": [ "source": [
"import prototorch as pt\n", "import prototorch as pt\n",
"import pytorch_lightning as pl\n", "import pytorch_lightning as pl\n",
"import torch" "import torch"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "1adbe2f8",
"metadata": {},
"source": [ "source": [
"### Building Models" "### Building Models"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "96663ab1",
"metadata": {},
"source": [ "source": [
"Let's start by building a `GLVQ` model. It is one of the simplest models to build. The only requirements are a prototype distribution and an initializer." "Let's start by building a `GLVQ` model. It is one of the simplest models to build. The only requirements are a prototype distribution and an initializer."
], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "819ba756",
"metadata": {},
"outputs": [],
"source": [ "source": [
"model = pt.models.GLVQ(\n", "model = pt.models.GLVQ(\n",
" hparams=dict(distribution=[1, 1, 1]),\n", " hparams=dict(distribution=[1, 1, 1]),\n",
" prototypes_initializer=pt.initializers.ZerosCompInitializer(2),\n", " prototypes_initializer=pt.initializers.ZerosCompInitializer(2),\n",
")" ")"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "1b37e97c",
"metadata": {},
"outputs": [],
"source": [ "source": [
"print(model)" "print(model)"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "d2c86903",
"metadata": {},
"source": [ "source": [
"The key `distribution` in the `hparams` argument describes the prototype distribution. If it is a Python [list](https://docs.python.org/3/tutorial/datastructures.html), it is assumed that there are as many entries in this list as there are classes, and the number at each location of this list describes the number of prototypes to be used for that particular class. So, `[1, 1, 1]` implies that we have three classes with one prototype per class. If it is a Python [tuple](https://docs.python.org/3/tutorial/datastructures.html), a shorthand of `(num_classes, prototypes_per_class)` is assumed. If it is a Python [dictionary](https://docs.python.org/3/tutorial/datastructures.html), the key-value pairs describe the class label and the number of prototypes for that class respectively. So, `{0: 2, 1: 2, 2: 2}` implies that we have three classes with labels `{1, 2, 3}`, each equipped with two prototypes. If however, the dictionary contains the keys `\"num_classes\"` and `\"per_class\"`, they are parsed to use their values as one might expect.\n", "The key `distribution` in the `hparams` argument describes the prototype distribution. If it is a Python [list](https://docs.python.org/3/tutorial/datastructures.html), it is assumed that there are as many entries in this list as there are classes, and the number at each location of this list describes the number of prototypes to be used for that particular class. So, `[1, 1, 1]` implies that we have three classes with one prototype per class. If it is a Python [tuple](https://docs.python.org/3/tutorial/datastructures.html), a shorthand of `(num_classes, prototypes_per_class)` is assumed. If it is a Python [dictionary](https://docs.python.org/3/tutorial/datastructures.html), the key-value pairs describe the class label and the number of prototypes for that class respectively. So, `{0: 2, 1: 2, 2: 2}` implies that we have three classes with labels `{1, 2, 3}`, each equipped with two prototypes. If however, the dictionary contains the keys `\"num_classes\"` and `\"per_class\"`, they are parsed to use their values as one might expect.\n",
"\n", "\n",
"The `prototypes_initializer` argument describes how the prototypes are meant to be initialized. This argument has to be an instantiated object of some kind of [AbstractComponentsInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L18). If this is a [ShapeAwareCompInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L41), this only requires a `shape` arugment that describes the shape of the prototypes. So, `pt.initializers.ZerosCompInitializer(3)` creates 3d-vector prototypes all initialized to zeros." "The `prototypes_initializer` argument describes how the prototypes are meant to be initialized. This argument has to be an instantiated object of some kind of [AbstractComponentsInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L18). If this is a [ShapeAwareCompInitializer](https://github.com/si-cim/prototorch/blob/dev/prototorch/components/initializers.py#L41), this only requires a `shape` arugment that describes the shape of the prototypes. So, `pt.initializers.ZerosCompInitializer(3)` creates 3d-vector prototypes all initialized to zeros."
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "45806052",
"metadata": {},
"source": [ "source": [
"### Data" "### Data"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "9d62c4c6",
"metadata": {},
"source": [ "source": [
"The preferred way to working with data in `torch` is to use the [Dataset and Dataloader API](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html). There a few pre-packaged datasets available under `prototorch.datasets`. See [here](https://prototorch.readthedocs.io/en/latest/api.html#module-prototorch.datasets) for a full list of available datasets." "The preferred way to working with data in `torch` is to use the [Dataset and Dataloader API](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html). There a few pre-packaged datasets available under `prototorch.datasets`. See [here](https://prototorch.readthedocs.io/en/latest/api.html#module-prototorch.datasets) for a full list of available datasets."
], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "504df02c",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds = pt.datasets.Iris(dims=[0, 2])" "train_ds = pt.datasets.Iris(dims=[0, 2])"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "3b8e7756",
"metadata": {},
"outputs": [],
"source": [ "source": [
"type(train_ds)" "type(train_ds)"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "bce43afa",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds.data.shape, train_ds.targets.shape" "train_ds.data.shape, train_ds.targets.shape"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "26a83328",
"metadata": {},
"source": [ "source": [
"Once we have such a dataset, we could wrap it in a `Dataloader` to load the data in batches, and possibly apply some transformations on the fly." "Once we have such a dataset, we could wrap it in a `Dataloader` to load the data in batches, and possibly apply some transformations on the fly."
], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "67b80fbe",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_loader = torch.utils.data.DataLoader(train_ds, batch_size=2)" "train_loader = torch.utils.data.DataLoader(train_ds, batch_size=2)"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c1185f31",
"metadata": {},
"outputs": [],
"source": [ "source": [
"type(train_loader)" "type(train_loader)"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "9b5a8963",
"metadata": {},
"outputs": [],
"source": [ "source": [
"x_batch, y_batch = next(iter(train_loader))\n", "x_batch, y_batch = next(iter(train_loader))\n",
"print(f\"{x_batch=}, {y_batch=}\")" "print(f\"{x_batch=}, {y_batch=}\")"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "dd492ee2",
"metadata": {},
"source": [ "source": [
"This perhaps seems like a lot of work for a small dataset that fits completely in memory. However, this comes in very handy when dealing with huge datasets that can only be processed in batches." "This perhaps seems like a lot of work for a small dataset that fits completely in memory. However, this comes in very handy when dealing with huge datasets that can only be processed in batches."
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "5176b055",
"metadata": {},
"source": [ "source": [
"### Training" "### Training"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "46a7a506",
"metadata": {},
"source": [ "source": [
"If you're familiar with other deep learning frameworks, you might perhaps expect a `.fit(...)` or `.train(...)` method. However, in PyTorch-Lightning, this is done slightly differently. We first create a trainer and then pass the model and the Dataloader to `trainer.fit(...)` instead. So, it is more functional in style than object-oriented." "If you're familiar with other deep learning frameworks, you might perhaps expect a `.fit(...)` or `.train(...)` method. However, in PyTorch-Lightning, this is done slightly differently. We first create a trainer and then pass the model and the Dataloader to `trainer.fit(...)` instead. So, it is more functional in style than object-oriented."
], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "279e75b7",
"metadata": {},
"outputs": [],
"source": [ "source": [
"trainer = pl.Trainer(max_epochs=2, weights_summary=None)" "trainer = pl.Trainer(max_epochs=2, weights_summary=None)"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "e496b492",
"metadata": {},
"outputs": [],
"source": [ "source": [
"trainer.fit(model, train_loader)" "trainer.fit(model, train_loader)"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "497fbff6",
"metadata": {},
"source": [ "source": [
"### From data to a trained model - a very minimal example" "### From data to a trained model - a very minimal example"
], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ab069c5d",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds = pt.datasets.Iris(dims=[0, 2])\n", "train_ds = pt.datasets.Iris(dims=[0, 2])\n",
"train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)\n", "train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)\n",
@ -230,49 +259,239 @@
"\n", "\n",
"trainer = pl.Trainer(max_epochs=50, weights_summary=None)\n", "trainer = pl.Trainer(max_epochs=50, weights_summary=None)\n",
"trainer.fit(model, train_loader)" "trainer.fit(model, train_loader)"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "30c71a93",
"metadata": {},
"source": [ "source": [
"## Advanced" "### Saving/Loading trained models"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "f74ed2c1",
"metadata": {},
"source": [ "source": [
"### Initializing prototypes with a subset of a dataset (along with transformations)" "Pytorch Lightning can automatically checkpoint the model during various stages of training, but it also possible to manually save a checkpoint after training."
], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "3156658d",
"metadata": {},
"outputs": [],
"source": [
"ckpt_path = \"./checkpoints/glvq_iris.ckpt\"\n",
"trainer.save_checkpoint(ckpt_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1c34055",
"metadata": {},
"outputs": [],
"source": [
"loaded_model = pt.models.GLVQ.load_from_checkpoint(ckpt_path, strict=False)"
]
},
{
"cell_type": "markdown",
"id": "bbbb08e9",
"metadata": {},
"source": [
"### Visualizing decision boundaries in 2D"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53ca52dc",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisGLVQ2D(data=train_ds).visualize(loaded_model)"
]
},
{
"cell_type": "markdown",
"id": "8373531f",
"metadata": {},
"source": [
"### Saving/Loading trained weights"
]
},
{
"cell_type": "markdown",
"id": "937bc458",
"metadata": {},
"source": [
"In most cases, the checkpointing workflow is sufficient. In some cases however, one might want to only save the trained weights from the model. The disadvantage of this method is that the model has be re-created using compatible initialization parameters before the weights could be loaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f2035af",
"metadata": {},
"outputs": [],
"source": [
"ckpt_path = \"./checkpoints/glvq_iris_weights.pth\"\n",
"torch.save(model.state_dict(), ckpt_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1206021a",
"metadata": {},
"outputs": [],
"source": [
"model = pt.models.GLVQ(\n",
" dict(distribution=(3, 2)),\n",
" prototypes_initializer=pt.initializers.ZerosCompInitializer(2),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f2a4beb",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisGLVQ2D(data=train_ds, title=\"Before loading the weights\").visualize(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "528d2fc2",
"metadata": {},
"outputs": [],
"source": [
"torch.load(ckpt_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ec817e6b",
"metadata": {},
"outputs": [],
"source": [
"model.load_state_dict(torch.load(ckpt_path), strict=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a208eab7",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisGLVQ2D(data=train_ds, title=\"After loading the weights\").visualize(model)"
]
},
{
"cell_type": "markdown",
"id": "f8de748f",
"metadata": {},
"source": [
"## Advanced"
]
},
{
"cell_type": "markdown",
"id": "53a64063",
"metadata": {},
"source": [
"### Warm-start a model with prototypes learned from another model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3177c277",
"metadata": {},
"outputs": [],
"source": [
"trained_model = pt.models.GLVQ.load_from_checkpoint(\"./checkpoints/glvq_iris.ckpt\", strict=False)\n",
"model = pt.models.SiameseGMLVQ(\n",
" dict(input_dim=2,\n",
" latent_dim=2,\n",
" distribution=(3, 2),\n",
" proto_lr=0.0001,\n",
" bb_lr=0.0001),\n",
" optimizer=torch.optim.Adam,\n",
" prototypes_initializer=pt.initializers.LCI(trained_model.prototypes),\n",
" labels_initializer=pt.initializers.LLI(trained_model.prototype_labels),\n",
" omega_initializer=pt.initializers.LLTI(torch.tensor([[0., 1.], [1., 0.]])), # permute axes\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8baee9a2",
"metadata": {},
"outputs": [],
"source": [
"print(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc203088",
"metadata": {},
"outputs": [],
"source": [
"pt.models.VisSiameseGLVQ2D(data=train_ds, title=\"GMLVQ - Warm-start state\").visualize(model)"
]
},
{
"cell_type": "markdown",
"id": "1f6a33a5",
"metadata": {},
"source": [
"### Initializing prototypes with a subset of a dataset (along with transformations)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "946ce341",
"metadata": {},
"outputs": [],
"source": [ "source": [
"import prototorch as pt\n", "import prototorch as pt\n",
"import pytorch_lightning as pl\n", "import pytorch_lightning as pl\n",
"import torch\n", "import torch\n",
"from torchvision import transforms\n", "from torchvision import transforms\n",
"from torchvision.datasets import MNIST" "from torchvision.datasets import MNIST\n",
], "from torchvision.utils import make_grid"
"outputs": [], ]
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "510d9bd4",
"metadata": {},
"outputs": [],
"source": [ "source": [
"from matplotlib import pyplot as plt" "from matplotlib import pyplot as plt"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ea7c1228",
"metadata": {},
"outputs": [],
"source": [ "source": [
"train_ds = MNIST(\n", "train_ds = MNIST(\n",
" \"~/datasets\",\n", " \"~/datasets\",\n",
@ -284,59 +503,87 @@
" transforms.ToTensor(),\n", " transforms.ToTensor(),\n",
" ]),\n", " ]),\n",
")" ")"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "1b9eaf5c",
"metadata": {},
"outputs": [],
"source": [ "source": [
"s = int(0.05 * len(train_ds))\n", "s = int(0.05 * len(train_ds))\n",
"init_ds, rest_ds = torch.utils.data.random_split(train_ds, [s, len(train_ds) - s])" "init_ds, rest_ds = torch.utils.data.random_split(train_ds, [s, len(train_ds) - s])"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "8c32c9f2",
"metadata": {},
"outputs": [],
"source": [ "source": [
"init_ds" "init_ds"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "68a9a8b9",
"metadata": {},
"outputs": [],
"source": [ "source": [
"model = pt.models.ImageGLVQ(\n", "model = pt.models.ImageGLVQ(\n",
" dict(distribution=(10, 5)),\n", " dict(distribution=(10, 1)),\n",
" prototypes_initializer=pt.initializers.SMCI(init_ds),\n", " prototypes_initializer=pt.initializers.SMCI(init_ds),\n",
")" ")"
], ]
"outputs": [],
"metadata": {}
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"source": [ "id": "6f23df86",
"plt.imshow(model.get_prototype_grid(num_columns=10))" "metadata": {},
],
"outputs": [], "outputs": [],
"metadata": {} "source": [
"plt.imshow(model.get_prototype_grid(num_columns=5))"
]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "1c23c7b2",
"metadata": {},
"source": [
"We could, of course, just use the initializers in isolation. For example, we could quickly obtain a stratified selection from the data like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30780927",
"metadata": {},
"outputs": [],
"source": [
"protos, plabels = pt.components.LabeledComponents(\n",
" distribution=(10, 5),\n",
" components_initializer=pt.initializers.SMCI(init_ds),\n",
" labels_initializer=pt.initializers.LabelsInitializer(),\n",
")()\n",
"plt.imshow(make_grid(protos, 10).permute(1, 2, 0)[:, :, 0], cmap=\"jet\")"
]
},
{
"cell_type": "markdown",
"id": "4fa69f92",
"metadata": {},
"source": [ "source": [
"## FAQs" "## FAQs"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "fa20f9ac",
"metadata": {},
"source": [ "source": [
"### How do I Retrieve the prototypes and their respective labels from the model?\n", "### How do I Retrieve the prototypes and their respective labels from the model?\n",
"\n", "\n",
@ -351,11 +598,12 @@
"```python\n", "```python\n",
">>> model.prototype_labels\n", ">>> model.prototype_labels\n",
"```" "```"
], ]
"metadata": {}
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "ba8215bf",
"metadata": {},
"source": [ "source": [
"### How do I make inferences/predictions/recall with my trained model?\n", "### How do I make inferences/predictions/recall with my trained model?\n",
"\n", "\n",
@ -370,13 +618,12 @@
"```python\n", "```python\n",
">>> y_pred = model(torch.Tensor(x_train)) # returns probabilities\n", ">>> y_pred = model(torch.Tensor(x_train)) # returns probabilities\n",
"```" "```"
], ]
"metadata": {}
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@ -390,7 +637,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.9.4" "version": "3.9.12"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@ -1,25 +1,32 @@
"""CBC example using the Iris dataset.""" """CBC example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import CBC, VisCBC2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32) train_loader = DataLoader(train_ds, batch_size=32)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -30,23 +37,32 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.CBC( model = CBC(
hparams, hparams,
components_initializer=pt.initializers.SSCI(train_ds, noise=0.01), components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
reasonings_iniitializer=pt.initializers. reasonings_initializer=pt.initializers.
PurePositiveReasoningsInitializer(), PurePositiveReasoningsInitializer(),
) )
# Callbacks # Callbacks
vis = pt.models.VisCBC2D(data=train_ds, vis = VisCBC2D(
data=train_ds,
title="CBC Iris Example", title="CBC Iris Example",
resolution=100, resolution=100,
axis_off=True) axis_off=True,
)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
detect_anomaly=True,
log_every_n_steps=1,
max_epochs=1000,
) )
# Training loop # Training loop

View File

@ -1,30 +1,50 @@
"""Dynamically prune 'loser' prototypes in GLVQ-type models.""" """Dynamically prune 'loser' prototypes in GLVQ-type models."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
CELVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
num_classes = 4 num_classes = 4
num_features = 2 num_features = 2
num_clusters = 1 num_clusters = 1
train_ds = pt.datasets.Random(num_samples=500, train_ds = pt.datasets.Random(
num_samples=500,
num_classes=num_classes, num_classes=num_classes,
num_features=num_features, num_features=num_features,
num_clusters=num_clusters, num_clusters=num_clusters,
separation=3.0, separation=3.0,
seed=42) seed=42,
)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256) train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters # Hyperparameters
prototypes_per_class = num_clusters * 5 prototypes_per_class = num_clusters * 5
@ -34,7 +54,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.CELVQ( model = CELVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.FVCI(2, 3.0), prototypes_initializer=pt.initializers.FVCI(2, 3.0),
) )
@ -43,18 +63,18 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(train_ds) vis = VisGLVQ2D(train_ds)
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, # prune prototype if it wins less than 1% threshold=0.01, # prune prototype if it wins less than 1%
idle_epochs=20, # pruning too early may cause problems idle_epochs=20, # pruning too early may cause problems
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
frequency=1, # prune every epoch frequency=1, # prune every epoch
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@ -64,17 +84,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
es, es,
], ],
progress_bar_refresh_rate=0, detect_anomaly=True,
terminate_on_nan=True, log_every_n_steps=1,
weights_summary="full", max_epochs=1000,
accelerator="ddp",
) )
# Training loop # Training loop

View File

@ -1,23 +1,35 @@
"""GLVQ example using the Iris dataset.""" """GLVQ example using the Iris dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -29,7 +41,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GLVQ( model = GLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
@ -41,15 +53,30 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
accelerator="ddp", callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
trainer.fit(model, train_loader) trainer.fit(model, train_loader)
# Manual save
trainer.save_checkpoint("./glvq_iris.ckpt")
# Load saved model
new_model = GLVQ.load_from_checkpoint(
checkpoint_path="./glvq_iris.ckpt",
strict=False,
)
logging.info(new_model)

View File

@ -1,23 +1,36 @@
"""GMLVQ example using the Iris dataset.""" """GMLVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GMLVQ, VisGMLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -32,7 +45,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GMLVQ( model = GMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
@ -44,15 +57,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 4) model.example_input_array = torch.zeros(4, 4)
# Callbacks # Callbacks
vis = pt.models.VisGMLVQ2D(data=train_ds) vis = VisGMLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
accelerator="ddp", callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
trainer.fit(model, train_loader) trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

View File

@ -1,17 +1,33 @@
"""GMLVQ example using the MNIST dataset.""" """GMLVQ example using the MNIST dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGMLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms from torchvision import transforms
from torchvision.datasets import MNIST from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
@ -33,12 +49,8 @@ if __name__ == "__main__":
) )
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
num_workers=0, test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
# Hyperparameters # Hyperparameters
num_classes = 10 num_classes = 10
@ -52,14 +64,14 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.ImageGMLVQ( model = ImageGMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
) )
# Callbacks # Callbacks
vis = pt.models.VisImgComp( vis = VisImgComp(
data=train_ds, data=train_ds,
num_columns=10, num_columns=10,
show=False, show=False,
@ -69,14 +81,14 @@ if __name__ == "__main__":
embedding_data=200, embedding_data=200,
flatten_data=False, flatten_data=False,
) )
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=1, idle_epochs=1,
prune_quota_per_epoch=10, prune_quota_per_epoch=10,
frequency=1, frequency=1,
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=15, patience=15,
@ -85,16 +97,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
# es, es,
], ],
terminate_on_nan=True, max_epochs=1000,
weights_summary=None, log_every_n_steps=1,
# accelerator="ddp", detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,22 +1,39 @@
"""GLVQ example using the spiral dataset.""" """GMLVQ example using the spiral dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GMLVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5) train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256) train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters # Hyperparameters
num_classes = 2 num_classes = 2
@ -32,19 +49,19 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GMLVQ( model = GMLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
) )
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D( vis = VisGLVQ2D(
train_ds, train_ds,
show_last_only=False, show_last_only=False,
block=False, block=False,
) )
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=10, idle_epochs=10,
prune_quota_per_epoch=5, prune_quota_per_epoch=5,
@ -53,7 +70,7 @@ if __name__ == "__main__":
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=1.0, min_delta=1.0,
patience=5, patience=5,
@ -62,14 +79,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
es, es,
pruning, pruning,
], ],
terminate_on_nan=True, max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,23 +1,33 @@
"""Growing Neural Gas example using the Iris dataset.""" """Growing Neural Gas example using the Iris dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GrowingNeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Prepare the data # Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -27,7 +37,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.GrowingNeuralGas( model = GrowingNeuralGas(
hparams, hparams,
prototypes_initializer=pt.initializers.ZCI(2), prototypes_initializer=pt.initializers.ZCI(2),
) )
@ -36,17 +46,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Model summary # Model summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisNG2D(data=train_loader) vis = VisNG2D(data=train_loader)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=100, max_epochs=100,
callbacks=[vis], log_every_n_steps=1,
weights_summary="full", detect_anomaly=True,
) )
# Training loop # Training loop

77
examples/grlvq_iris.py Normal file
View File

@ -0,0 +1,77 @@
"""GMLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GRLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris([0, 1])
# Dataloaders
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
input_dim=2,
distribution={
"num_classes": 3,
"per_class": 2
},
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = GRLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = VisSiameseGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=5,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)
torch.save(model, "iris.pth")

119
examples/gtlvq_mnist.py Normal file
View File

@ -0,0 +1,119 @@
"""GTLVQ example using the MNIST dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
ImageGTLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = MNIST(
"~/datasets",
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]),
)
test_ds = MNIST(
"~/datasets",
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]),
)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
# Hyperparameters
num_classes = 10
prototypes_per_class = 1
hparams = dict(
input_dim=28 * 28,
latent_dim=28,
distribution=(num_classes, prototypes_per_class),
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = ImageGTLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
#Use one batch of data for subspace initiator.
omega_initializer=pt.initializers.PCALinearTransformInitializer(
next(iter(train_loader))[0].reshape(256, 28 * 28)))
# Callbacks
vis = VisImgComp(
data=train_ds,
num_columns=10,
show=False,
tensorboard=True,
random_data=100,
add_embedding=True,
embedding_data=200,
flatten_data=False,
)
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=1,
prune_quota_per_epoch=10,
frequency=1,
verbose=True,
)
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=15,
mode="min",
check_on_train_epoch_end=True,
)
# Setup trainer
# using GPUs here is strongly recommended!
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
pruning,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)

79
examples/gtlvq_moons.py Normal file
View File

@ -0,0 +1,79 @@
"""Localized-GTLVQ example using the Moons dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import GTLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Reproducibility
seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = DataLoader(
train_ds,
batch_size=256,
shuffle=True,
)
# Hyperparameters
# Latent_dim should be lower than input dim.
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
# Initialize the model
model = GTLVQ(hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds))
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
logging.info(model)
# Callbacks
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
mode="max",
verbose=False,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)

View File

@ -1,60 +1,75 @@
"""k-NN example using the Iris dataset from scikit-learn.""" """k-NN example using the Iris dataset from scikit-learn."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from prototorch.models import KNN, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
X, y = load_iris(return_X_y=True) X, y = load_iris(return_X_y=True)
X = X[:, [0, 2]] X = X[:, 0:3:2]
X_train, X_test, y_train, y_test = train_test_split(X, X_train, X_test, y_train, y_test = train_test_split(
X,
y, y,
test_size=0.5, test_size=0.5,
random_state=42) random_state=42,
)
train_ds = pt.datasets.NumpyDataset(X_train, y_train) train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test) test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16) train_loader = DataLoader(train_ds, batch_size=16)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16) test_loader = DataLoader(test_ds, batch_size=16)
# Hyperparameters # Hyperparameters
hparams = dict(k=5) hparams = dict(k=5)
# Initialize the model # Initialize the model
model = pt.models.KNN(hparams, data=train_ds) model = KNN(hparams, data=train_ds)
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D( vis = VisGLVQ2D(
data=(X_train, y_train), data=(X_train, y_train),
resolution=200, resolution=200,
block=True, block=True,
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=1, max_epochs=1,
callbacks=[vis], callbacks=[
weights_summary="full", vis,
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
@ -63,7 +78,7 @@ if __name__ == "__main__":
# Recall # Recall
y_pred = model.predict(torch.tensor(X_train)) y_pred = model.predict(torch.tensor(X_train))
print(y_pred) logging.info(y_pred)
# Test # Test
trainer.test(model, dataloaders=test_loader) trainer.test(model, dataloaders=test_loader)

View File

@ -1,15 +1,25 @@
"""Kohonen Self Organizing Map.""" """Kohonen Self Organizing Map."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from prototorch.models import KohonenSOM
from prototorch.utils.colors import hex_to_rgb from prototorch.utils.colors import hex_to_rgb
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader, TensorDataset
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Vis2DColorSOM(pl.Callback): class Vis2DColorSOM(pl.Callback):
def __init__(self, data, title="ColorSOMe", pause_time=0.1): def __init__(self, data, title="ColorSOMe", pause_time=0.1):
super().__init__() super().__init__()
self.title = title self.title = title
@ -17,7 +27,7 @@ class Vis2DColorSOM(pl.Callback):
self.data = data self.data = data
self.pause_time = pause_time self.pause_time = pause_time
def on_epoch_end(self, trainer, pl_module): def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
ax = self.fig.gca() ax = self.fig.gca()
ax.cla() ax.cla()
ax.set_title(self.title) ax.set_title(self.title)
@ -30,12 +40,14 @@ class Vis2DColorSOM(pl.Callback):
d = pl_module.compute_distances(self.data) d = pl_module.compute_distances(self.data)
wp = pl_module.predict_from_distances(d) wp = pl_module.predict_from_distances(d)
for i, iloc in enumerate(wp): for i, iloc in enumerate(wp):
plt.text(iloc[1], plt.text(
iloc[1],
iloc[0], iloc[0],
cnames[i], color_names[i],
ha="center", ha="center",
va="center", va="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0)) bbox=dict(facecolor="white", alpha=0.5, lw=0),
)
if trainer.current_epoch != trainer.max_epochs - 1: if trainer.current_epoch != trainer.max_epochs - 1:
plt.pause(self.pause_time) plt.pause(self.pause_time)
@ -46,11 +58,12 @@ class Vis2DColorSOM(pl.Callback):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Prepare the data # Prepare the data
hex_colors = [ hex_colors = [
@ -58,15 +71,15 @@ if __name__ == "__main__":
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff", "#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500" "#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
] ]
cnames = [ color_names = [
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green", "black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey", "red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
"lightgrey", "olive", "purple", "orange" "lightgrey", "olive", "purple", "orange"
] ]
colors = list(hex_to_rgb(hex_colors)) colors = list(hex_to_rgb(hex_colors))
data = torch.Tensor(colors) / 255.0 data = torch.Tensor(colors) / 255.0
train_ds = torch.utils.data.TensorDataset(data) train_ds = TensorDataset(data)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8) train_loader = DataLoader(train_ds, batch_size=8)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -77,7 +90,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.KohonenSOM( model = KohonenSOM(
hparams, hparams,
prototypes_initializer=pt.initializers.RNCI(3), prototypes_initializer=pt.initializers.RNCI(3),
) )
@ -86,17 +99,22 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 3) model.example_input_array = torch.zeros(4, 3)
# Model summary # Model summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = Vis2DColorSOM(data=data) vis = Vis2DColorSOM(data=data)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
max_epochs=500, max_epochs=500,
callbacks=[vis], callbacks=[
weights_summary="full", vis,
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,27 +1,36 @@
"""Localized-GMLVQ example using the Moons dataset.""" """Localized-GMLVQ example using the Moons dataset."""
import argparse import argparse
import logging
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import LGMLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=2) seed_everything(seed=2)
# Dataset # Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42) train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
batch_size=256,
shuffle=True)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -31,7 +40,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.LGMLVQ( model = LGMLVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
) )
@ -40,11 +49,11 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary # Summary
print(model) logging.info(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_acc", monitor="train_acc",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@ -54,14 +63,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
es, es,
], ],
weights_summary="full", log_every_n_steps=1,
accelerator="ddp", max_epochs=1000,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,13 +1,26 @@
"""LVQMLN example using all four dimensions of the Iris dataset.""" """LVQMLN example using all four dimensions of the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
LVQMLN,
PruneLoserPrototypes,
VisSiameseGLVQ2D,
)
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module): class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2): def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__() super().__init__()
self.input_size = input_size self.input_size = input_size
@ -26,17 +39,18 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -49,7 +63,7 @@ if __name__ == "__main__":
backbone = Backbone() backbone = Backbone()
# Initialize the model # Initialize the model
model = pt.models.LVQMLN( model = LVQMLN(
hparams, hparams,
prototypes_initializer=pt.initializers.SSCI( prototypes_initializer=pt.initializers.SSCI(
train_ds, train_ds,
@ -58,18 +72,15 @@ if __name__ == "__main__":
backbone=backbone, backbone=backbone,
) )
# Model summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisSiameseGLVQ2D( vis = VisSiameseGLVQ2D(
data=train_ds, data=train_ds,
map_protos=False, map_protos=False,
border=0.1, border=0.1,
resolution=500, resolution=500,
axis_off=True, axis_off=True,
) )
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.01, threshold=0.01,
idle_epochs=20, idle_epochs=20,
prune_quota_per_epoch=2, prune_quota_per_epoch=2,
@ -78,12 +89,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
], ],
log_every_n_steps=1,
max_epochs=1000,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,28 +1,40 @@
"""Median-LVQ example using the Iris dataset.""" """Median-LVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import MedianLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader( train_loader = DataLoader(
train_ds, train_ds,
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
) )
# Initialize the model # Initialize the model
model = pt.models.MedianLVQ( model = MedianLVQ(
hparams=dict(distribution=(3, 2), lr=0.01), hparams=dict(distribution=(3, 2), lr=0.01),
prototypes_initializer=pt.initializers.SSCI(train_ds), prototypes_initializer=pt.initializers.SSCI(train_ds),
) )
@ -31,8 +43,8 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_acc", monitor="train_acc",
min_delta=0.01, min_delta=0.01,
patience=5, patience=5,
@ -42,10 +54,17 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis, es], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,23 +1,35 @@
"""Neural Gas example using the Iris dataset.""" """Neural Gas example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import NeuralGas, VisNG2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Prepare and pre-process the dataset # Prepare and pre-process the dataset
x_train, y_train = load_iris(return_X_y=True) x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]] x_train = x_train[:, 0:3:2]
scaler = StandardScaler() scaler = StandardScaler()
scaler.fit(x_train) scaler.fit(x_train)
x_train = scaler.transform(x_train) x_train = scaler.transform(x_train)
@ -25,7 +37,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.NumpyDataset(x_train, y_train) train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -35,7 +47,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.NeuralGas( model = NeuralGas(
hparams, hparams,
prototypes_initializer=pt.core.ZCI(2), prototypes_initializer=pt.core.ZCI(2),
lr_scheduler=ExponentialLR, lr_scheduler=ExponentialLR,
@ -45,17 +57,20 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisNG2D(data=train_ds) vis = VisNG2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
weights_summary="full", fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -1,25 +1,34 @@
"""RSLVQ example using the Iris dataset.""" """RSLVQ example using the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import RSLVQ, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=42) seed_everything(seed=42)
# Dataset # Dataset
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
@ -33,7 +42,7 @@ if __name__ == "__main__":
) )
# Initialize the model # Initialize the model
model = pt.models.RSLVQ( model = RSLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2), prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
@ -42,19 +51,20 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes # Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
terminate_on_nan=True, fast_dev_run=args.fast_dev_run,
weights_summary="full", callbacks=[
accelerator="ddp", vis,
],
detect_anomaly=True,
max_epochs=100,
log_every_n_steps=1,
) )
# Training loop # Training loop

View File

@ -1,13 +1,22 @@
"""Siamese GLVQ example using all four dimensions of the Iris dataset.""" """Siamese GLVQ example using all four dimensions of the Iris dataset."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module): class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2): def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__() super().__init__()
self.input_size = input_size self.input_size = input_size
@ -26,46 +35,50 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__": if __name__ == "__main__":
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Dataset # Dataset
train_ds = pt.datasets.Iris() train_ds = pt.datasets.Iris()
# Reproducibility # Reproducibility
pl.utilities.seed.seed_everything(seed=2) seed_everything(seed=2)
# Dataloaders # Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters # Hyperparameters
hparams = dict( hparams = dict(
distribution=[1, 2, 3], distribution=[1, 2, 3],
proto_lr=0.01, lr=0.01,
bb_lr=0.01,
) )
# Initialize the backbone # Initialize the backbone
backbone = Backbone() backbone = Backbone()
# Initialize the model # Initialize the model
model = pt.models.SiameseGLVQ( model = SiameseGLVQ(
hparams, hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds), prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone, backbone=backbone,
both_path_gradients=False, both_path_gradients=False,
) )
# Model summary
print(model)
# Callbacks # Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1) vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
callbacks=[vis], devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

View File

@ -0,0 +1,87 @@
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.latent_size = latent_size
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
self.activation = torch.nn.Sigmoid()
def forward(self, x):
x = self.activation(self.dense1(x))
out = self.activation(self.dense2(x))
return out
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris()
# Reproducibility
seed_everything(seed=2)
# Dataloaders
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
distribution=[1, 2, 3],
lr=0.01,
input_dim=2,
latent_dim=1,
)
# Initialize the backbone
backbone = Backbone(latent_size=hparams["input_dim"])
# Initialize the model
model = SiameseGTLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)
# Callbacks
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer
trainer = pl.Trainer(
accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
trainer.fit(model, train_loader)

View File

@ -1,24 +1,42 @@
"""Warm-starting GLVQ with prototypes from Growing Neural Gas.""" """Warm-starting GLVQ with prototypes from Growing Neural Gas."""
import argparse import argparse
import warnings
import prototorch as pt import prototorch as pt
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from lightning_fabric.utilities.seed import seed_everything
from prototorch.models import (
GLVQ,
KNN,
GrowingNeuralGas,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__": if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments # Command-line arguments
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--fast_dev_run", type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# Prepare the data # Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2]) train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
# Initialize the gng # Initialize the gng
gng = pt.models.GrowingNeuralGas( gng = GrowingNeuralGas(
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1), hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
prototypes_initializer=pt.initializers.ZCI(2), prototypes_initializer=pt.initializers.ZCI(2),
lr_scheduler=ExponentialLR, lr_scheduler=ExponentialLR,
@ -26,7 +44,7 @@ if __name__ == "__main__":
) )
# Callbacks # Callbacks
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="loss", monitor="loss",
min_delta=0.001, min_delta=0.001,
patience=20, patience=20,
@ -37,9 +55,14 @@ if __name__ == "__main__":
# Setup trainer for GNG # Setup trainer for GNG
trainer = pl.Trainer( trainer = pl.Trainer(
max_epochs=100, accelerator="cpu",
callbacks=[es], max_epochs=50 if args.fast_dev_run else
weights_summary=None, 1000, # 10 epochs fast dev run reproducible DIV error.
callbacks=[
es,
],
log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop
@ -52,12 +75,12 @@ if __name__ == "__main__":
) )
# Warm-start prototypes # Warm-start prototypes
knn = pt.models.KNN(dict(k=1), data=train_ds) knn = KNN(dict(k=1), data=train_ds)
prototypes = gng.prototypes prototypes = gng.prototypes
plabels = knn.predict(prototypes) plabels = knn.predict(prototypes)
# Initialize the model # Initialize the model
model = pt.models.GLVQ( model = GLVQ(
hparams, hparams,
optimizer=torch.optim.Adam, optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.LCI(prototypes), prototypes_initializer=pt.initializers.LCI(prototypes),
@ -70,15 +93,15 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2) model.example_input_array = torch.zeros(4, 2)
# Callbacks # Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds) vis = VisGLVQ2D(data=train_ds)
pruning = pt.models.PruneLoserPrototypes( pruning = PruneLoserPrototypes(
threshold=0.02, threshold=0.02,
idle_epochs=2, idle_epochs=2,
prune_quota_per_epoch=5, prune_quota_per_epoch=5,
frequency=1, frequency=1,
verbose=True, verbose=True,
) )
es = pl.callbacks.EarlyStopping( es = EarlyStopping(
monitor="train_loss", monitor="train_loss",
min_delta=0.001, min_delta=0.001,
patience=10, patience=10,
@ -88,15 +111,18 @@ if __name__ == "__main__":
) )
# Setup trainer # Setup trainer
trainer = pl.Trainer.from_argparse_args( trainer = pl.Trainer(
args, accelerator="cuda" if args.gpus else "cpu",
devices=args.gpus if args.gpus else "auto",
fast_dev_run=args.fast_dev_run,
callbacks=[ callbacks=[
vis, vis,
pruning, pruning,
es, es,
], ],
weights_summary="full", max_epochs=1000,
accelerator="ddp", log_every_n_steps=1,
detect_anomaly=True,
) )
# Training loop # Training loop

90
pyproject.toml Normal file
View File

@ -0,0 +1,90 @@
[project]
name = "prototorch-models"
version = "0.7.1"
description = "Pre-packaged prototype-based machine learning models using ProtoTorch and PyTorch-Lightning."
authors = [
{ name = "Jensun Ravichandran", email = "jjensun@gmail.com" },
{ name = "Alexander Engelsberger", email = "engelsbe@hs-mittweida.de" },
]
dependencies = ["lightning>=2.0.0", "prototorch>=0.7.5"]
requires-python = ">=3.8"
readme = "README.md"
license = { text = "MIT" }
classifiers = [
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
]
[project.urls]
Homepage = "https://github.com/si-cim/prototorch_models"
Downloads = "https://github.com/si-cim/prototorch_models.git"
[project.optional-dependencies]
dev = ["bumpversion", "pre-commit", "yapf", "toml"]
examples = ["matplotlib", "scikit-learn"]
ci = ["pytest", "pre-commit"]
docs = [
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
all = [
"bumpversion",
"pre-commit",
"yapf",
"toml",
"pytest",
"matplotlib",
"scikit-learn",
"recommonmark",
"nbsphinx",
"sphinx",
"sphinx_rtd_theme",
"sphinxcontrib-bibtex",
"sphinxcontrib-katex",
"ipykernel",
]
[build-system]
requires = ["setuptools>=61", "wheel"]
build-backend = "setuptools.build_meta"
[tool.yapf]
based_on_style = "pep8"
spaces_before_comment = 2
split_before_logical_operator = true
[tool.pylint]
disable = ["too-many-arguments", "too-few-public-methods", "fixme"]
[tool.isort]
profile = "hug"
src_paths = ["isort", "test"]
multi_line_output = 3
include_trailing_comma = true
force_grid_wrap = 3
use_parentheses = true
line_length = 79
[tool.mypy]
explicit_package_bases = true
namespace_packages = true

View File

@ -1,8 +0,0 @@
[isort]
profile = hug
src_paths = isort, test
[yapf]
based_on_style = pep8
spaces_before_comment = 2
split_before_logical_operator = true

View File

@ -1,97 +0,0 @@
"""
######
# # ##### #### ##### #### ##### #### ##### #### # #
# # # # # # # # # # # # # # # # # #
###### # # # # # # # # # # # # # ######
# ##### # # # # # # # # ##### # # #
# # # # # # # # # # # # # # # # #
# # # #### # #### # #### # # #### # #Plugin
ProtoTorch models Plugin Package
"""
from pkg_resources import safe_name
from setuptools import find_namespace_packages, setup
PLUGIN_NAME = "models"
PROJECT_URL = "https://github.com/si-cim/prototorch_models"
DOWNLOAD_URL = "https://github.com/si-cim/prototorch_models.git"
with open("README.md", "r") as fh:
long_description = fh.read()
INSTALL_REQUIRES = [
"prototorch>=0.7.0",
"pytorch_lightning>=1.3.5",
"torchmetrics",
]
CLI = [
"jsonargparse",
]
DEV = [
"bumpversion",
"pre-commit",
]
DOCS = [
"recommonmark",
"sphinx",
"nbsphinx",
"ipykernel",
"sphinx_rtd_theme",
"sphinxcontrib-katex",
"sphinxcontrib-bibtex",
]
EXAMPLES = [
"matplotlib",
"scikit-learn",
]
TESTS = [
"codecov",
"pytest",
]
ALL = CLI + DEV + DOCS + EXAMPLES + TESTS
setup(
name=safe_name("prototorch_" + PLUGIN_NAME),
version="0.3.0",
description="Pre-packaged prototype-based "
"machine learning models using ProtoTorch and PyTorch-Lightning.",
long_description=long_description,
long_description_content_type="text/markdown",
author="Alexander Engelsberger",
author_email="engelsbe@hs-mittweida.de",
url=PROJECT_URL,
download_url=DOWNLOAD_URL,
license="MIT",
python_requires=">=3.6",
install_requires=INSTALL_REQUIRES,
extras_require={
"dev": DEV,
"examples": EXAMPLES,
"tests": TESTS,
"all": ALL,
},
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Environment :: Plugins",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.6",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
entry_points={
"prototorch.plugins": f"{PLUGIN_NAME} = prototorch.{PLUGIN_NAME}"
},
packages=find_namespace_packages(include=["prototorch.*"]),
zip_safe=False,
)

View File

@ -8,17 +8,32 @@ from .glvq import (
GLVQ21, GLVQ21,
GMLVQ, GMLVQ,
GRLVQ, GRLVQ,
GTLVQ,
LGMLVQ, LGMLVQ,
LVQMLN, LVQMLN,
ImageGLVQ, ImageGLVQ,
ImageGMLVQ, ImageGMLVQ,
ImageGTLVQ,
SiameseGLVQ, SiameseGLVQ,
SiameseGMLVQ, SiameseGMLVQ,
SiameseGTLVQ,
) )
from .knn import KNN from .knn import KNN
from .lvq import LVQ1, LVQ21, MedianLVQ from .lvq import (
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ LVQ1,
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas LVQ21,
MedianLVQ,
)
from .probabilistic import (
CELVQ,
RSLVQ,
SLVQ,
)
from .unsupervised import (
GrowingNeuralGas,
KohonenSOM,
NeuralGas,
)
from .vis import * from .vis import *
__version__ = "0.3.0" __version__ = "0.7.1"

View File

@ -1,19 +1,29 @@
"""Abstract classes to be inherited by prototorch models.""" """Abstract classes to be inherited by prototorch models."""
import logging
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
import torch.nn.functional as F
import torchmetrics import torchmetrics
from prototorch.core.competitions import WTAC
from ..core.competitions import WTAC from prototorch.core.components import (
from ..core.components import Components, LabeledComponents AbstractComponents,
from ..core.distances import euclidean_distance Components,
from ..core.initializers import LabelsInitializer LabeledComponents,
from ..core.pooling import stratified_min_pooling )
from ..nn.wrappers import LambdaLayer from prototorch.core.distances import euclidean_distance
from prototorch.core.initializers import (
LabelsInitializer,
ZerosCompInitializer,
)
from prototorch.core.pooling import stratified_min_pooling
from prototorch.nn.wrappers import LambdaLayer
class ProtoTorchBolt(pl.LightningModule): class ProtoTorchBolt(pl.LightningModule):
"""All ProtoTorch models are ProtoTorch Bolts.""" """All ProtoTorch models are ProtoTorch Bolts."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__() super().__init__()
@ -29,7 +39,7 @@ class ProtoTorchBolt(pl.LightningModule):
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict()) self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
def configure_optimizers(self): def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr) optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
if self.lr_scheduler is not None: if self.lr_scheduler is not None:
scheduler = self.lr_scheduler(optimizer, scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs) **self.lr_scheduler_kwargs)
@ -42,7 +52,10 @@ class ProtoTorchBolt(pl.LightningModule):
return optimizer return optimizer
def reconfigure_optimizers(self): def reconfigure_optimizers(self):
self.trainer.accelerator.setup_optimizers(self.trainer) if self.trainer:
self.trainer.strategy.setup_optimizers(self.trainer)
else:
logging.warning("No trainer to reconfigure optimizers!")
def __repr__(self): def __repr__(self):
surep = super().__repr__() surep = super().__repr__()
@ -52,11 +65,13 @@ class ProtoTorchBolt(pl.LightningModule):
class PrototypeModel(ProtoTorchBolt): class PrototypeModel(ProtoTorchBolt):
proto_layer: AbstractComponents
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
distance_fn = kwargs.get("distance_fn", euclidean_distance) distance_fn = kwargs.get("distance_fn", euclidean_distance)
self.distance_layer = LambdaLayer(distance_fn) self.distance_layer = LambdaLayer(distance_fn, name="distance_fn")
@property @property
def num_prototypes(self): def num_prototypes(self):
@ -73,14 +88,18 @@ class PrototypeModel(ProtoTorchBolt):
def add_prototypes(self, *args, **kwargs): def add_prototypes(self, *args, **kwargs):
self.proto_layer.add_components(*args, **kwargs) self.proto_layer.add_components(*args, **kwargs)
self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers() self.reconfigure_optimizers()
def remove_prototypes(self, indices): def remove_prototypes(self, indices):
self.proto_layer.remove_components(indices) self.proto_layer.remove_components(indices)
self.hparams["distribution"] = self.proto_layer.distribution
self.reconfigure_optimizers() self.reconfigure_optimizers()
class UnsupervisedPrototypeModel(PrototypeModel): class UnsupervisedPrototypeModel(PrototypeModel):
proto_layer: Components
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -88,7 +107,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
prototypes_initializer = kwargs.get("prototypes_initializer", None) prototypes_initializer = kwargs.get("prototypes_initializer", None)
if prototypes_initializer is not None: if prototypes_initializer is not None:
self.proto_layer = Components( self.proto_layer = Components(
self.hparams.num_prototypes, self.hparams["num_prototypes"],
initializer=prototypes_initializer, initializer=prototypes_initializer,
) )
@ -103,19 +122,34 @@ class UnsupervisedPrototypeModel(PrototypeModel):
class SupervisedPrototypeModel(PrototypeModel): class SupervisedPrototypeModel(PrototypeModel):
def __init__(self, hparams, **kwargs): proto_layer: LabeledComponents
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Layers # Layers
distribution = hparams.get("distribution", None)
prototypes_initializer = kwargs.get("prototypes_initializer", None) prototypes_initializer = kwargs.get("prototypes_initializer", None)
labels_initializer = kwargs.get("labels_initializer", labels_initializer = kwargs.get("labels_initializer",
LabelsInitializer()) LabelsInitializer())
if not skip_proto_layer:
# when subclasses do not need a customized prototype layer
if prototypes_initializer is not None: if prototypes_initializer is not None:
# when building a new model
self.proto_layer = LabeledComponents( self.proto_layer = LabeledComponents(
distribution=self.hparams.distribution, distribution=distribution,
components_initializer=prototypes_initializer, components_initializer=prototypes_initializer,
labels_initializer=labels_initializer, labels_initializer=labels_initializer,
) )
proto_shape = self.proto_layer.components.shape[1:]
self.hparams["initialized_proto_shape"] = proto_shape
else:
# when restoring a checkpointed model
self.proto_layer = LabeledComponents(
distribution=distribution,
components_initializer=ZerosCompInitializer(
self.hparams["initialized_proto_shape"]),
)
self.competition_layer = WTAC() self.competition_layer = WTAC()
@property @property
@ -135,7 +169,7 @@ class SupervisedPrototypeModel(PrototypeModel):
distances = self.compute_distances(x) distances = self.compute_distances(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
winning = stratified_min_pooling(distances, plabels) winning = stratified_min_pooling(distances, plabels)
y_pred = torch.nn.functional.softmin(winning) y_pred = F.softmin(winning, dim=1)
return y_pred return y_pred
def predict_from_distances(self, distances): def predict_from_distances(self, distances):
@ -152,43 +186,57 @@ class SupervisedPrototypeModel(PrototypeModel):
def log_acc(self, distances, targets, tag): def log_acc(self, distances, targets, tag):
preds = self.predict_from_distances(distances) preds = self.predict_from_distances(distances)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int()) accuracy = torchmetrics.functional.accuracy(
# `.int()` because FloatTensors are assumed to be class probabilities preds.int(),
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log(tag, self.log(
tag,
accuracy, accuracy,
on_step=False, on_step=False,
on_epoch=True, on_epoch=True,
prog_bar=True, prog_bar=True,
logger=True) logger=True,
)
def test_step(self, batch, batch_idx): def test_step(self, batch, batch_idx):
x, targets = batch x, targets = batch
preds = self.predict(x) preds = self.predict(x)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int()) accuracy = torchmetrics.functional.accuracy(
preds.int(),
targets.int(),
"multiclass",
num_classes=self.num_classes,
)
self.log("test_acc", accuracy) self.log("test_acc", accuracy)
class ProtoTorchMixin(object): class ProtoTorchMixin:
"""All mixins are ProtoTorchMixins.""" """All mixins are ProtoTorchMixins."""
pass
class NonGradientMixin(ProtoTorchMixin): class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization.""" """Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.automatic_optimization = False self.automatic_optimization = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
raise NotImplementedError raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin): class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes.""" """Mixin for models with image prototypes."""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): proto_layer: Components
components: torch.Tensor
def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates.""" """Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0) self.proto_layer.components.data.clamp_(0.0, 1.0)

View File

@ -1,24 +1,30 @@
"""Lightning Callbacks.""" """Lightning Callbacks."""
import logging import logging
from typing import TYPE_CHECKING
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from prototorch.core.initializers import LiteralCompInitializer
from ..core.components import Components
from ..core.initializers import LiteralCompInitializer
from .extras import ConnectionTopology from .extras import ConnectionTopology
if TYPE_CHECKING:
from prototorch.models import GLVQ, GrowingNeuralGas
class PruneLoserPrototypes(pl.Callback): class PruneLoserPrototypes(pl.Callback):
def __init__(self,
def __init__(
self,
threshold=0.01, threshold=0.01,
idle_epochs=10, idle_epochs=10,
prune_quota_per_epoch=-1, prune_quota_per_epoch=-1,
frequency=1, frequency=1,
replace=False, replace=False,
prototypes_initializer=None, prototypes_initializer=None,
verbose=False): verbose=False,
):
self.threshold = threshold # minimum win ratio self.threshold = threshold # minimum win ratio
self.idle_epochs = idle_epochs # epochs to wait before pruning self.idle_epochs = idle_epochs # epochs to wait before pruning
self.prune_quota_per_epoch = prune_quota_per_epoch self.prune_quota_per_epoch = prune_quota_per_epoch
@ -27,7 +33,7 @@ class PruneLoserPrototypes(pl.Callback):
self.verbose = verbose self.verbose = verbose
self.prototypes_initializer = prototypes_initializer self.prototypes_initializer = prototypes_initializer
def on_epoch_end(self, trainer, pl_module): def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
if (trainer.current_epoch + 1) < self.idle_epochs: if (trainer.current_epoch + 1) < self.idle_epochs:
return None return None
if (trainer.current_epoch + 1) % self.frequency: if (trainer.current_epoch + 1) % self.frequency:
@ -42,41 +48,44 @@ class PruneLoserPrototypes(pl.Callback):
prune_labels = prune_labels[:self.prune_quota_per_epoch] prune_labels = prune_labels[:self.prune_quota_per_epoch]
if len(to_prune) > 0: if len(to_prune) > 0:
if self.verbose: logging.debug(f"\nPrototype win ratios: {ratios}")
print(f"\nPrototype win ratios: {ratios}") logging.debug(f"Pruning prototypes at: {to_prune}")
print(f"Pruning prototypes at: {to_prune}") logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
print(f"Corresponding labels are: {prune_labels.tolist()}")
cur_num_protos = pl_module.num_prototypes cur_num_protos = pl_module.num_prototypes
pl_module.remove_prototypes(indices=to_prune) pl_module.remove_prototypes(indices=to_prune)
if self.replace: if self.replace:
labels, counts = torch.unique(prune_labels, labels, counts = torch.unique(prune_labels,
sorted=True, sorted=True,
return_counts=True) return_counts=True)
distribution = dict(zip(labels.tolist(), counts.tolist())) distribution = dict(zip(labels.tolist(), counts.tolist()))
if self.verbose:
print(f"Re-adding pruned prototypes...") logging.info(f"Re-adding pruned prototypes...")
print(f"distribution={distribution}") logging.debug(f"distribution={distribution}")
pl_module.add_prototypes( pl_module.add_prototypes(
distribution=distribution, distribution=distribution,
components_initializer=self.prototypes_initializer) components_initializer=self.prototypes_initializer)
new_num_protos = pl_module.num_prototypes new_num_protos = pl_module.num_prototypes
if self.verbose:
print(f"`num_prototypes` changed from {cur_num_protos} " logging.info(f"`num_prototypes` changed from {cur_num_protos} "
f"to {new_num_protos}.") f"to {new_num_protos}.")
return True return True
class PrototypeConvergence(pl.Callback): class PrototypeConvergence(pl.Callback):
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False): def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
self.min_delta = min_delta self.min_delta = min_delta
self.idle_epochs = idle_epochs # epochs to wait self.idle_epochs = idle_epochs # epochs to wait
self.verbose = verbose self.verbose = verbose
def on_epoch_end(self, trainer, pl_module): def on_train_epoch_end(self, trainer, pl_module):
if (trainer.current_epoch + 1) < self.idle_epochs: if (trainer.current_epoch + 1) < self.idle_epochs:
return None return None
if self.verbose:
print("Stopping...") logging.info("Stopping...")
# TODO # TODO
return True return True
@ -89,16 +98,21 @@ class GNGCallback(pl.Callback):
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke. Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
""" """
def __init__(self, reduction=0.1, freq=10): def __init__(self, reduction=0.1, freq=10):
self.reduction = reduction self.reduction = reduction
self.freq = freq self.freq = freq
def on_epoch_end(self, trainer: pl.Trainer, pl_module): def on_train_epoch_end(
self,
trainer: pl.Trainer,
pl_module: "GrowingNeuralGas",
):
if (trainer.current_epoch + 1) % self.freq == 0: if (trainer.current_epoch + 1) % self.freq == 0:
# Get information # Get information
errors = pl_module.errors errors = pl_module.errors
topology: ConnectionTopology = pl_module.topology_layer topology: ConnectionTopology = pl_module.topology_layer
components: Components = pl_module.proto_layer.components components = pl_module.proto_layer.components
# Insertion point # Insertion point
worst = torch.argmax(errors) worst = torch.argmax(errors)
@ -118,8 +132,9 @@ class GNGCallback(pl.Callback):
# Add component # Add component
pl_module.proto_layer.add_components( pl_module.proto_layer.add_components(
None, 1,
initializer=LiteralCompInitializer(new_component.unsqueeze(0))) initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
)
# Adjust Topology # Adjust Topology
topology.add_prototype() topology.add_prototype()
@ -134,4 +149,4 @@ class GNGCallback(pl.Callback):
pl_module.errors[ pl_module.errors[
worst_neighbor] = errors[worst_neighbor] * self.reduction worst_neighbor] = errors[worst_neighbor] * self.reduction
trainer.accelerator.setup_optimizers(trainer) trainer.strategy.setup_optimizers(trainer)

View File

@ -1,20 +1,21 @@
import torch import torch
import torchmetrics import torchmetrics
from prototorch.core.competitions import CBCC
from prototorch.core.components import ReasoningComponents
from prototorch.core.initializers import RandomReasoningsInitializer
from prototorch.core.losses import MarginLoss
from prototorch.core.similarities import euclidean_similarity
from prototorch.nn.wrappers import LambdaLayer
from ..core.competitions import CBCC
from ..core.components import ReasoningComponents
from ..core.initializers import RandomReasoningsInitializer
from ..core.losses import MarginLoss
from ..core.similarities import euclidean_similarity
from ..nn.wrappers import LambdaLayer
from .abstract import ImagePrototypesMixin from .abstract import ImagePrototypesMixin
from .glvq import SiameseGLVQ from .glvq import SiameseGLVQ
class CBC(SiameseGLVQ): class CBC(SiameseGLVQ):
"""Classification-By-Components.""" """Classification-By-Components."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, skip_proto_layer=True, **kwargs)
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity) similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
components_initializer = kwargs.get("components_initializer", None) components_initializer = kwargs.get("components_initializer", None)
@ -43,7 +44,7 @@ class CBC(SiameseGLVQ):
probs = self.competition_layer(detections, reasonings) probs = self.competition_layer(detections, reasonings)
return probs return probs
def shared_step(self, batch, batch_idx, optimizer_idx=None): def shared_step(self, batch, batch_idx):
x, y = batch x, y = batch
y_pred = self(x) y_pred = self(x)
num_classes = self.num_classes num_classes = self.num_classes
@ -51,17 +52,23 @@ class CBC(SiameseGLVQ):
loss = self.loss(y_pred, y_true).mean() loss = self.loss(y_pred, y_true).mean()
return y_pred, loss return y_pred, loss
def training_step(self, batch, batch_idx, optimizer_idx=None): def training_step(self, batch, batch_idx):
y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx) y_pred, train_loss = self.shared_step(batch, batch_idx)
preds = torch.argmax(y_pred, dim=1) preds = torch.argmax(y_pred, dim=1)
accuracy = torchmetrics.functional.accuracy(preds.int(), accuracy = torchmetrics.functional.accuracy(
batch[1].int()) preds.int(),
self.log("train_acc", batch[1].int(),
"multiclass",
num_classes=self.num_classes,
)
self.log(
"train_acc",
accuracy, accuracy,
on_step=False, on_step=False,
on_epoch=True, on_epoch=True,
prog_bar=True, prog_bar=True,
logger=True) logger=True,
)
return train_loss return train_loss
def predict(self, x): def predict(self, x):

View File

@ -5,8 +5,7 @@ Modules not yet available in prototorch go here temporarily.
""" """
import torch import torch
from prototorch.core.similarities import gaussian
from ..core.similarities import gaussian
def rank_scaled_gaussian(distances, lambd): def rank_scaled_gaussian(distances, lambd):
@ -15,7 +14,46 @@ def rank_scaled_gaussian(distances, lambd):
return torch.exp(-torch.exp(-ranks / lambd) * distances) return torch.exp(-torch.exp(-ranks / lambd) * distances)
def orthogonalization(tensors):
"""Orthogonalization via polar decomposition """
u, _, v = torch.svd(tensors, compute_uv=True)
u_shape = tuple(list(u.shape))
v_shape = tuple(list(v.shape))
# reshape to (num x N x M)
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
out = u @ v.permute([0, 2, 1])
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
return out
def ltangent_distance(x, y, omegas):
r"""Localized Tangent distance.
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
:param `torch.tensor` omegas: Three dimensional matrix
:rtype: `torch.tensor`
"""
x, y = (arr.view(arr.size(0), -1) for arr in (x, y))
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
omegas, omegas.permute([0, 2, 1]))
projected_x = x @ p
projected_y = torch.diagonal(y @ p).T
expanded_y = torch.unsqueeze(projected_y, dim=1)
batchwise_difference = expanded_y - projected_x
differences_squared = batchwise_difference**2
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
distances = distances.permute(1, 0)
return distances
class GaussianPrior(torch.nn.Module): class GaussianPrior(torch.nn.Module):
def __init__(self, variance): def __init__(self, variance):
super().__init__() super().__init__()
self.variance = variance self.variance = variance
@ -25,6 +63,7 @@ class GaussianPrior(torch.nn.Module):
class RankScaledGaussianPrior(torch.nn.Module): class RankScaledGaussianPrior(torch.nn.Module):
def __init__(self, lambd): def __init__(self, lambd):
super().__init__() super().__init__()
self.lambd = lambd self.lambd = lambd
@ -34,6 +73,7 @@ class RankScaledGaussianPrior(torch.nn.Module):
class ConnectionTopology(torch.nn.Module): class ConnectionTopology(torch.nn.Module):
def __init__(self, agelimit, num_prototypes): def __init__(self, agelimit, num_prototypes):
super().__init__() super().__init__()
self.agelimit = agelimit self.agelimit = agelimit

View File

@ -1,19 +1,29 @@
"""Models based on the GLVQ framework.""" """Models based on the GLVQ framework."""
import torch import torch
from prototorch.core.competitions import wtac
from prototorch.core.distances import (
lomega_distance,
omega_distance,
squared_euclidean_distance,
)
from prototorch.core.initializers import EyeLinearTransformInitializer
from prototorch.core.losses import (
GLVQLoss,
lvq1_loss,
lvq21_loss,
)
from prototorch.core.transforms import LinearTransform
from prototorch.nn.wrappers import LambdaLayer, LossLayer
from torch.nn.parameter import Parameter from torch.nn.parameter import Parameter
from ..core.competitions import wtac
from ..core.distances import lomega_distance, omega_distance, squared_euclidean_distance
from ..core.initializers import EyeTransformInitializer
from ..core.losses import GLVQLoss, lvq1_loss, lvq21_loss
from ..core.transforms import LinearTransform
from ..nn.wrappers import LambdaLayer, LossLayer
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
from .extras import ltangent_distance, orthogonalization
class GLVQ(SupervisedPrototypeModel): class GLVQ(SupervisedPrototypeModel):
"""Generalized Learning Vector Quantization.""" """Generalized Learning Vector Quantization."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -24,17 +34,21 @@ class GLVQ(SupervisedPrototypeModel):
# Loss # Loss
self.loss = GLVQLoss( self.loss = GLVQLoss(
margin=self.hparams.margin, margin=self.hparams["margin"],
transfer_fn=self.hparams.transfer_fn, transfer_fn=self.hparams["transfer_fn"],
beta=self.hparams.transfer_beta, beta=self.hparams["transfer_beta"],
) )
# def on_save_checkpoint(self, checkpoint):
# if "prototype_win_ratios" in checkpoint["state_dict"]:
# del checkpoint["state_dict"]["prototype_win_ratios"]
def initialize_prototype_win_ratios(self): def initialize_prototype_win_ratios(self):
self.register_buffer( self.register_buffer(
"prototype_win_ratios", "prototype_win_ratios",
torch.zeros(self.num_prototypes, device=self.device)) torch.zeros(self.num_prototypes, device=self.device))
def on_epoch_start(self): def on_train_epoch_start(self):
self.initialize_prototype_win_ratios() self.initialize_prototype_win_ratios()
def log_prototype_win_ratios(self, distances): def log_prototype_win_ratios(self, distances):
@ -52,15 +66,15 @@ class GLVQ(SupervisedPrototypeModel):
prototype_wr, prototype_wr,
]) ])
def shared_step(self, batch, batch_idx, optimizer_idx=None): def shared_step(self, batch, batch_idx):
x, y = batch x, y = batch
out = self.compute_distances(x) out = self.compute_distances(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
loss = self.loss(out, y, plabels) loss = self.loss(out, y, plabels)
return out, loss return out, loss
def training_step(self, batch, batch_idx, optimizer_idx=None): def training_step(self, batch, batch_idx):
out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx) out, train_loss = self.shared_step(batch, batch_idx)
self.log_prototype_win_ratios(out) self.log_prototype_win_ratios(out)
self.log("train_loss", train_loss) self.log("train_loss", train_loss)
self.log_acc(out, batch[-1], tag="train_acc") self.log_acc(out, batch[-1], tag="train_acc")
@ -85,10 +99,6 @@ class GLVQ(SupervisedPrototypeModel):
test_loss += batch_loss.item() test_loss += batch_loss.item()
self.log("test_loss", test_loss) self.log("test_loss", test_loss)
# TODO
# def predict_step(self, batch, batch_idx, dataloader_idx=None):
# pass
class SiameseGLVQ(GLVQ): class SiameseGLVQ(GLVQ):
"""GLVQ in a Siamese setting. """GLVQ in a Siamese setting.
@ -98,6 +108,7 @@ class SiameseGLVQ(GLVQ):
transformation pipeline are only learned from the inputs. transformation pipeline are only learned from the inputs.
""" """
def __init__(self, def __init__(self,
hparams, hparams,
backbone=torch.nn.Identity(), backbone=torch.nn.Identity(),
@ -108,33 +119,17 @@ class SiameseGLVQ(GLVQ):
self.backbone = backbone self.backbone = backbone
self.both_path_gradients = both_path_gradients self.both_path_gradients = both_path_gradients
def configure_optimizers(self):
proto_opt = self.optimizer(self.proto_layer.parameters(),
lr=self.hparams.proto_lr)
# Only add a backbone optimizer if backbone has trainable parameters
bb_params = list(self.backbone.parameters())
if (bb_params):
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
optimizers = [proto_opt, bb_opt]
else:
optimizers = [proto_opt]
if self.lr_scheduler is not None:
schedulers = []
for optimizer in optimizers:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
schedulers.append(scheduler)
return optimizers, schedulers
else:
return optimizers
def compute_distances(self, x): def compute_distances(self, x):
protos, _ = self.proto_layer() protos, _ = self.proto_layer()
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)] x, protos = (arr.view(arr.size(0), -1) for arr in (x, protos))
latent_x = self.backbone(x) latent_x = self.backbone(x)
self.backbone.requires_grad_(self.both_path_gradients)
bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
self.backbone.requires_grad_(bb_grad and self.both_path_gradients)
latent_protos = self.backbone(protos) latent_protos = self.backbone(protos)
self.backbone.requires_grad_(True) self.backbone.requires_grad_(bb_grad)
distances = self.distance_layer(latent_x, latent_protos) distances = self.distance_layer(latent_x, latent_protos)
return distances return distances
@ -164,6 +159,7 @@ class LVQMLN(SiameseGLVQ):
rather in the embedding space. rather in the embedding space.
""" """
def compute_distances(self, x): def compute_distances(self, x):
latent_protos, _ = self.proto_layer() latent_protos, _ = self.proto_layer()
latent_x = self.backbone(x) latent_x = self.backbone(x)
@ -179,17 +175,22 @@ class GRLVQ(SiameseGLVQ):
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise. TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
""" """
_relevances: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Additional parameters # Additional parameters
relevances = torch.ones(self.hparams.input_dim, device=self.device) relevances = torch.ones(self.hparams["input_dim"], device=self.device)
self.register_parameter("_relevances", Parameter(relevances)) self.register_parameter("_relevances", Parameter(relevances))
# Override the backbone # Override the backbone
self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances), self.backbone = LambdaLayer(self._apply_relevances,
name="relevance scaling") name="relevance scaling")
def _apply_relevances(self, x):
return x @ torch.diag(self._relevances)
@property @property
def relevance_profile(self): def relevance_profile(self):
return self._relevances.detach().cpu() return self._relevances.detach().cpu()
@ -204,15 +205,16 @@ class SiameseGMLVQ(SiameseGLVQ):
Implemented as a Siamese network with a linear transformation backbone. Implemented as a Siamese network with a linear transformation backbone.
""" """
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Override the backbone # Override the backbone
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get("omega_initializer",
EyeTransformInitializer()) EyeLinearTransformInitializer())
self.backbone = LinearTransform( self.backbone = LinearTransform(
self.hparams.input_dim, self.hparams["input_dim"],
self.hparams.output_dim, self.hparams["latent_dim"],
initializer=omega_initializer, initializer=omega_initializer,
) )
@ -222,7 +224,7 @@ class SiameseGMLVQ(SiameseGLVQ):
@property @property
def lambda_matrix(self): def lambda_matrix(self):
omega = self.backbone.weight # (input_dim, latent_dim) omega = self.backbone.weights # (input_dim, latent_dim)
lam = omega @ omega.T lam = omega @ omega.T
return lam.detach().cpu() return lam.detach().cpu()
@ -234,18 +236,20 @@ class GMLVQ(GLVQ):
function. This makes it easier to implement a localized variant. function. This makes it easier to implement a localized variant.
""" """
# Parameters
_omega: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", omega_distance) distance_fn = kwargs.pop("distance_fn", omega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs) super().__init__(hparams, distance_fn=distance_fn, **kwargs)
# Additional parameters # Additional parameters
omega_initializer = kwargs.get("omega_initializer", omega_initializer = kwargs.get("omega_initializer",
EyeTransformInitializer()) EyeLinearTransformInitializer())
omega = omega_initializer.generate(self.hparams.input_dim, omega = omega_initializer.generate(self.hparams["input_dim"],
self.hparams.latent_dim) self.hparams["latent_dim"])
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
self.backbone = LambdaLayer(lambda x: x @ self._omega,
name="omega matrix")
@property @property
def omega_matrix(self): def omega_matrix(self):
@ -268,6 +272,7 @@ class GMLVQ(GLVQ):
class LGMLVQ(GMLVQ): class LGMLVQ(GMLVQ):
"""Localized and Generalized Matrix Learning Vector Quantization.""" """Localized and Generalized Matrix Learning Vector Quantization."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", lomega_distance) distance_fn = kwargs.pop("distance_fn", lomega_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs) super().__init__(hparams, distance_fn=distance_fn, **kwargs)
@ -275,15 +280,59 @@ class LGMLVQ(GMLVQ):
# Re-register `_omega` to override the one from the super class. # Re-register `_omega` to override the one from the super class.
omega = torch.randn( omega = torch.randn(
self.num_prototypes, self.num_prototypes,
self.hparams.input_dim, self.hparams["input_dim"],
self.hparams.latent_dim, self.hparams["latent_dim"],
device=self.device, device=self.device,
) )
self.register_parameter("_omega", Parameter(omega)) self.register_parameter("_omega", Parameter(omega))
class GTLVQ(LGMLVQ):
"""Localized and Generalized Tangent Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
omega_initializer = kwargs.get("omega_initializer")
if omega_initializer is not None:
subspace = omega_initializer.generate(
self.hparams["input_dim"],
self.hparams["latent_dim"],
)
omega = torch.repeat_interleave(
subspace.unsqueeze(0),
self.num_prototypes,
dim=0,
)
else:
omega = torch.rand(
self.num_prototypes,
self.hparams["input_dim"],
self.hparams["latent_dim"],
device=self.device,
)
# Re-register `_omega` to override the one from the super class.
self.register_parameter("_omega", Parameter(omega))
def on_train_batch_end(self, outputs, batch, batch_idx):
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
"""Generalized Tangent Learning Vector Quantization.
Implemented as a Siamese network with a linear transformation backbone.
"""
class GLVQ1(GLVQ): class GLVQ1(GLVQ):
"""Generalized Learning Vector Quantization 1.""" """Generalized Learning Vector Quantization 1."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.loss = LossLayer(lvq1_loss) self.loss = LossLayer(lvq1_loss)
@ -292,6 +341,7 @@ class GLVQ1(GLVQ):
class GLVQ21(GLVQ): class GLVQ21(GLVQ):
"""Generalized Learning Vector Quantization 2.1.""" """Generalized Learning Vector Quantization 2.1."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.loss = LossLayer(lvq21_loss) self.loss = LossLayer(lvq21_loss)
@ -314,3 +364,18 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
after updates. after updates.
""" """
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
"""GTLVQ for training on image data.
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
def on_train_batch_end(self, outputs, batch, batch_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))

View File

@ -2,17 +2,22 @@
import warnings import warnings
from ..core.competitions import KNNC from prototorch.core.competitions import KNNC
from ..core.components import LabeledComponents from prototorch.core.components import LabeledComponents
from ..core.initializers import LiteralCompInitializer, LiteralLabelsInitializer from prototorch.core.initializers import (
from ..utils.utils import parse_data_arg LiteralCompInitializer,
LiteralLabelsInitializer,
)
from prototorch.utils.utils import parse_data_arg
from .abstract import SupervisedPrototypeModel from .abstract import SupervisedPrototypeModel
class KNN(SupervisedPrototypeModel): class KNN(SupervisedPrototypeModel):
"""K-Nearest-Neighbors classification algorithm.""" """K-Nearest-Neighbors classification algorithm."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, skip_proto_layer=True, **kwargs)
# Default hparams # Default hparams
self.hparams.setdefault("k", 1) self.hparams.setdefault("k", 1)
@ -24,18 +29,15 @@ class KNN(SupervisedPrototypeModel):
# Layers # Layers
self.proto_layer = LabeledComponents( self.proto_layer = LabeledComponents(
distribution=[], distribution=len(data) * [1],
components_initializer=LiteralCompInitializer(data), components_initializer=LiteralCompInitializer(data),
labels_initializer=LiteralLabelsInitializer(targets)) labels_initializer=LiteralLabelsInitializer(targets))
self.competition_layer = KNNC(k=self.hparams.k) self.competition_layer = KNNC(k=self.hparams.k)
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
return 1 # skip training step return 1 # skip training step
def on_train_batch_start(self, def on_train_batch_start(self, train_batch, batch_idx):
train_batch,
batch_idx,
dataloader_idx=None):
warnings.warn("k-NN has no training, skipping!") warnings.warn("k-NN has no training, skipping!")
return -1 return -1

View File

@ -1,15 +1,19 @@
"""LVQ models that are optimized using non-gradient methods.""" """LVQ models that are optimized using non-gradient methods."""
from ..core.losses import _get_dp_dm import logging
from ..nn.activations import get_activation
from ..nn.wrappers import LambdaLayer from prototorch.core.losses import _get_dp_dm
from prototorch.nn.activations import get_activation
from prototorch.nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin from .abstract import NonGradientMixin
from .glvq import GLVQ from .glvq import GLVQ
class LVQ1(NonGradientMixin, GLVQ): class LVQ1(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 1.""" """Learning Vector Quantization 1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
protos, plables = self.proto_layer() protos, plables = self.proto_layer()
x, y = train_batch x, y = train_batch
dis = self.compute_distances(x) dis = self.compute_distances(x)
@ -28,8 +32,8 @@ class LVQ1(NonGradientMixin, GLVQ):
self.proto_layer.load_state_dict({"_components": updated_protos}, self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False) strict=False)
print(f"dis={dis}") logging.debug(f"dis={dis}")
print(f"y={y}") logging.debug(f"y={y}")
# Logging # Logging
self.log_acc(dis, y, tag="train_acc") self.log_acc(dis, y, tag="train_acc")
@ -38,7 +42,8 @@ class LVQ1(NonGradientMixin, GLVQ):
class LVQ21(NonGradientMixin, GLVQ): class LVQ21(NonGradientMixin, GLVQ):
"""Learning Vector Quantization 2.1.""" """Learning Vector Quantization 2.1."""
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
def training_step(self, train_batch, batch_idx):
protos, plabels = self.proto_layer() protos, plabels = self.proto_layer()
x, y = train_batch x, y = train_batch
@ -70,8 +75,8 @@ class MedianLVQ(NonGradientMixin, GLVQ):
# TODO Avoid computing distances over and over # TODO Avoid computing distances over and over
""" """
def __init__(self, hparams, verbose=True, **kwargs):
self.verbose = verbose def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.transfer_layer = LambdaLayer( self.transfer_layer = LambdaLayer(
@ -95,7 +100,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
lower_bound = (gamma * f.log()).sum() lower_bound = (gamma * f.log()).sum()
return lower_bound return lower_bound
def training_step(self, train_batch, batch_idx, optimizer_idx=None): def training_step(self, train_batch, batch_idx):
protos, plabels = self.proto_layer() protos, plabels = self.proto_layer()
x, y = train_batch x, y = train_batch
@ -112,8 +117,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
_protos[i] = xk _protos[i] = xk
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma) _lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
if _lower_bound > lower_bound: if _lower_bound > lower_bound:
if self.verbose: logging.debug(f"Updating prototype {i} to data {k}...")
print(f"Updating prototype {i} to data {k}...")
self.proto_layer.load_state_dict({"_components": _protos}, self.proto_layer.load_state_dict({"_components": _protos},
strict=False) strict=False)
break break

View File

@ -1,23 +1,27 @@
"""Probabilistic GLVQ methods""" """Probabilistic GLVQ methods"""
import torch import torch
from prototorch.core.losses import nllr_loss, rslvq_loss
from prototorch.core.pooling import (
stratified_min_pooling,
stratified_sum_pooling,
)
from prototorch.nn.wrappers import LossLayer
from ..core.losses import nllr_loss, rslvq_loss
from ..core.pooling import stratified_min_pooling, stratified_sum_pooling
from ..nn.wrappers import LambdaLayer, LossLayer
from .extras import GaussianPrior, RankScaledGaussianPrior from .extras import GaussianPrior, RankScaledGaussianPrior
from .glvq import GLVQ, SiameseGMLVQ from .glvq import GLVQ, SiameseGMLVQ
class CELVQ(GLVQ): class CELVQ(GLVQ):
"""Cross-Entropy Learning Vector Quantization.""" """Cross-Entropy Learning Vector Quantization."""
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
# Loss # Loss
self.loss = torch.nn.CrossEntropyLoss() self.loss = torch.nn.CrossEntropyLoss()
def shared_step(self, batch, batch_idx, optimizer_idx=None): def shared_step(self, batch, batch_idx):
x, y = batch x, y = batch
out = self.compute_distances(x) # [None, num_protos] out = self.compute_distances(x) # [None, num_protos]
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
@ -29,20 +33,28 @@ class CELVQ(GLVQ):
class ProbabilisticLVQ(GLVQ): class ProbabilisticLVQ(GLVQ):
def __init__(self, hparams, rejection_confidence=0.0, **kwargs): def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
self.conditional_distribution = None
self.rejection_confidence = rejection_confidence self.rejection_confidence = rejection_confidence
self._conditional_distribution = None
def forward(self, x): def forward(self, x):
distances = self.compute_distances(x) distances = self.compute_distances(x)
conditional = self.conditional_distribution(distances) conditional = self.conditional_distribution(distances)
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes, prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
device=self.device) device=self.device)
posterior = conditional * prior posterior = conditional * prior
plabels = self.proto_layer._labels plabels = self.proto_layer._labels
y_pred = stratified_sum_pooling(posterior, plabels) if isinstance(plabels, torch.LongTensor) or isinstance(
plabels, torch.cuda.LongTensor): # type: ignore
y_pred = stratified_sum_pooling(posterior, plabels) # type: ignore
else:
raise ValueError("Labels must be LongTensor.")
return y_pred return y_pred
def predict(self, x): def predict(self, x):
@ -51,7 +63,7 @@ class ProbabilisticLVQ(GLVQ):
prediction[confidence < self.rejection_confidence] = -1 prediction[confidence < self.rejection_confidence] = -1
return prediction return prediction
def training_step(self, batch, batch_idx, optimizer_idx=None): def training_step(self, batch, batch_idx):
x, y = batch x, y = batch
out = self.forward(x) out = self.forward(x)
_, plabels = self.proto_layer() _, plabels = self.proto_layer()
@ -59,21 +71,39 @@ class ProbabilisticLVQ(GLVQ):
loss = batch_loss.sum() loss = batch_loss.sum()
return loss return loss
def conditional_distribution(self, distances):
"""Conditional distribution of distances."""
if self._conditional_distribution is None:
raise ValueError("Conditional distribution is not set.")
return self._conditional_distribution(distances)
class SLVQ(ProbabilisticLVQ): class SLVQ(ProbabilisticLVQ):
"""Soft Learning Vector Quantization.""" """Soft Learning Vector Quantization."""
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
# Default hparams
self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance")
self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(nllr_loss) self.loss = LossLayer(nllr_loss)
self.conditional_distribution = GaussianPrior(self.hparams.variance)
class RSLVQ(ProbabilisticLVQ): class RSLVQ(ProbabilisticLVQ):
"""Robust Soft Learning Vector Quantization.""" """Robust Soft Learning Vector Quantization."""
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
# Default hparams
self.hparams.setdefault("variance", 1.0)
variance = self.hparams.get("variance")
self._conditional_distribution = GaussianPrior(variance)
self.loss = LossLayer(rslvq_loss) self.loss = LossLayer(rslvq_loss)
self.conditional_distribution = GaussianPrior(self.hparams.variance)
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ): class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
@ -81,14 +111,19 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
TODO: Use Backbone LVQ instead TODO: Use Backbone LVQ instead
""" """
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.conditional_distribution = RankScaledGaussianPrior(
self.hparams.lambd) # Default hparams
self.hparams.setdefault("lambda", 1.0)
lam = self.hparams.get("lambda", 1.0)
self.conditional_distribution = RankScaledGaussianPrior(lam)
self.loss = torch.nn.KLDivLoss() self.loss = torch.nn.KLDivLoss()
# FIXME # FIXME
# def training_step(self, batch, batch_idx, optimizer_idx=None): # def training_step(self, batch, batch_idx):
# x, y = batch # x, y = batch
# y_pred = self(x) # y_pred = self(x)
# batch_loss = self.loss(y_pred, y) # batch_loss = self.loss(y_pred, y)

View File

@ -2,11 +2,10 @@
import numpy as np import numpy as np
import torch import torch
from prototorch.core.competitions import wtac
from prototorch.core.distances import squared_euclidean_distance
from prototorch.core.losses import NeuralGasEnergy
from ..core.competitions import wtac
from ..core.distances import squared_euclidean_distance
from ..core.losses import NeuralGasEnergy
from ..nn.wrappers import LambdaLayer
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
from .callbacks import GNGCallback from .callbacks import GNGCallback
from .extras import ConnectionTopology from .extras import ConnectionTopology
@ -18,6 +17,8 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
TODO Allow non-2D grids TODO Allow non-2D grids
""" """
_grid: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
h, w = hparams.get("shape") h, w = hparams.get("shape")
# Ignore `num_prototypes` # Ignore `num_prototypes`
@ -34,7 +35,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
# Additional parameters # Additional parameters
x, y = torch.arange(h), torch.arange(w) x, y = torch.arange(h), torch.arange(w)
grid = torch.stack(torch.meshgrid(x, y), dim=-1) grid = torch.stack(torch.meshgrid(x, y, indexing="ij"), dim=-1)
self.register_buffer("_grid", grid) self.register_buffer("_grid", grid)
self._sigma = self.hparams.sigma self._sigma = self.hparams.sigma
self._lr = self.hparams.lr self._lr = self.hparams.lr
@ -57,10 +58,12 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
diff = x.unsqueeze(dim=1) - protos diff = x.unsqueeze(dim=1) - protos
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
updated_protos = protos + delta.sum(dim=0) updated_protos = protos + delta.sum(dim=0)
self.proto_layer.load_state_dict({"_components": updated_protos}, self.proto_layer.load_state_dict(
strict=False) {"_components": updated_protos},
strict=False,
)
def training_epoch_end(self, training_step_outputs): def on_training_epoch_end(self, training_step_outputs):
self._sigma = self.hparams.sigma * np.exp( self._sigma = self.hparams.sigma * np.exp(
-self.current_epoch / self.trainer.max_epochs) -self.current_epoch / self.trainer.max_epochs)
@ -69,6 +72,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
class HeskesSOM(UnsupervisedPrototypeModel): class HeskesSOM(UnsupervisedPrototypeModel):
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -78,6 +82,7 @@ class HeskesSOM(UnsupervisedPrototypeModel):
class NeuralGas(UnsupervisedPrototypeModel): class NeuralGas(UnsupervisedPrototypeModel):
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -85,13 +90,13 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.save_hyperparameters(hparams) self.save_hyperparameters(hparams)
# Default hparams # Default hparams
self.hparams.setdefault("agelimit", 10) self.hparams.setdefault("age_limit", 10)
self.hparams.setdefault("lm", 1) self.hparams.setdefault("lm", 1)
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm) self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
self.topology_layer = ConnectionTopology( self.topology_layer = ConnectionTopology(
agelimit=self.hparams.agelimit, agelimit=self.hparams["age_limit"],
num_prototypes=self.hparams.num_prototypes, num_prototypes=self.hparams["num_prototypes"],
) )
def training_step(self, train_batch, batch_idx): def training_step(self, train_batch, batch_idx):
@ -104,12 +109,10 @@ class NeuralGas(UnsupervisedPrototypeModel):
self.log("loss", loss) self.log("loss", loss)
return loss return loss
# def training_epoch_end(self, training_step_outputs):
# print(f"{self.trainer.lr_schedulers}")
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
class GrowingNeuralGas(NeuralGas): class GrowingNeuralGas(NeuralGas):
errors: torch.Tensor
def __init__(self, hparams, **kwargs): def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)
@ -118,7 +121,10 @@ class GrowingNeuralGas(NeuralGas):
self.hparams.setdefault("insert_reduction", 0.1) self.hparams.setdefault("insert_reduction", 0.1)
self.hparams.setdefault("insert_freq", 10) self.hparams.setdefault("insert_freq", 10)
errors = torch.zeros(self.hparams.num_prototypes, device=self.device) errors = torch.zeros(
self.hparams["num_prototypes"],
device=self.device,
)
self.register_buffer("errors", errors) self.register_buffer("errors", errors)
def training_step(self, train_batch, _batch_idx): def training_step(self, train_batch, _batch_idx):
@ -133,7 +139,7 @@ class GrowingNeuralGas(NeuralGas):
dp = d * mask dp = d * mask
self.errors += torch.sum(dp * dp) self.errors += torch.sum(dp * dp)
self.errors *= self.hparams.step_reduction self.errors *= self.hparams["step_reduction"]
self.topology_layer(d) self.topology_layer(d)
self.log("loss", loss) self.log("loss", loss)
@ -141,6 +147,8 @@ class GrowingNeuralGas(NeuralGas):
def configure_callbacks(self): def configure_callbacks(self):
return [ return [
GNGCallback(reduction=self.hparams.insert_reduction, GNGCallback(
freq=self.hparams.insert_freq) reduction=self.hparams["insert_reduction"],
freq=self.hparams["insert_freq"],
)
] ]

View File

@ -1,20 +1,28 @@
"""Visualization Callbacks.""" """Visualization Callbacks."""
import warnings
from typing import Sized
import numpy as np import numpy as np
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
import torchvision import torchvision
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from prototorch.utils.colors import get_colors, get_legend_handles
from prototorch.utils.utils import mesh2d
from pytorch_lightning.loggers import TensorBoardLogger
from torch.utils.data import DataLoader, Dataset from torch.utils.data import DataLoader, Dataset
from ..utils.utils import mesh2d
class Vis2DAbstract(pl.Callback): class Vis2DAbstract(pl.Callback):
def __init__(self, def __init__(self,
data, data=None,
title="Prototype Visualization", title="Prototype Visualization",
cmap="viridis", cmap="viridis",
xlabel="Data dimension 1",
ylabel="Data dimension 2",
legend_labels=None,
border=0.1, border=0.1,
resolution=100, resolution=100,
flatten_data=True, flatten_data=True,
@ -27,9 +35,15 @@ class Vis2DAbstract(pl.Callback):
block=False): block=False):
super().__init__() super().__init__()
if data:
if isinstance(data, Dataset): if isinstance(data, Dataset):
if isinstance(data, Sized):
x, y = next(iter(DataLoader(data, batch_size=len(data)))) x, y = next(iter(DataLoader(data, batch_size=len(data))))
elif isinstance(data, torch.utils.data.DataLoader): else:
# TODO: Add support for non-sized datasets
raise NotImplementedError(
"Data must be a dataset with a __len__ method.")
elif isinstance(data, DataLoader):
x = torch.tensor([]) x = torch.tensor([])
y = torch.tensor([]) y = torch.tensor([])
for x_b, y_b in data: for x_b, y_b in data:
@ -43,8 +57,14 @@ class Vis2DAbstract(pl.Callback):
self.x_train = x self.x_train = x
self.y_train = y self.y_train = y
else:
self.x_train = None
self.y_train = None
self.title = title self.title = title
self.xlabel = xlabel
self.ylabel = ylabel
self.legend_labels = legend_labels
self.fig = plt.figure(self.title) self.fig = plt.figure(self.title)
self.cmap = cmap self.cmap = cmap
self.border = border self.border = border
@ -63,14 +83,12 @@ class Vis2DAbstract(pl.Callback):
return False return False
return True return True
def setup_ax(self, xlabel=None, ylabel=None): def setup_ax(self):
ax = self.fig.gca() ax = self.fig.gca()
ax.cla() ax.cla()
ax.set_title(self.title) ax.set_title(self.title)
if xlabel: ax.set_xlabel(self.xlabel)
ax.set_xlabel("Data dimension 1") ax.set_ylabel(self.ylabel)
if ylabel:
ax.set_ylabel("Data dimension 2")
if self.axis_off: if self.axis_off:
ax.axis("off") ax.axis("off")
return ax return ax
@ -113,42 +131,47 @@ class Vis2DAbstract(pl.Callback):
else: else:
plt.show(block=self.block) plt.show(block=self.block)
def on_train_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
self.visualize(pl_module)
self.log_and_display(trainer, pl_module)
def on_train_end(self, trainer, pl_module): def on_train_end(self, trainer, pl_module):
plt.close() plt.close()
def visualize(self, pl_module):
raise NotImplementedError
class VisGLVQ2D(Vis2DAbstract): class VisGLVQ2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
def visualize(self, pl_module):
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
ax = self.setup_ax(xlabel="Data dimension 1", ax = self.setup_ax()
ylabel="Data dimension 2")
self.plot_data(ax, x_train, y_train)
self.plot_protos(ax, protos, plabels) self.plot_protos(ax, protos, plabels)
x = np.vstack((x_train, protos)) if x_train is not None:
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution) self.plot_data(ax, x_train, y_train)
mesh_input, xx, yy = mesh2d(np.vstack([x_train, protos]),
self.border, self.resolution)
else:
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
_components = pl_module.proto_layer._components _components = pl_module.proto_layer._components
mesh_input = torch.from_numpy(mesh_input).type_as(_components) mesh_input = torch.from_numpy(mesh_input).type_as(_components)
y_pred = pl_module.predict(mesh_input) y_pred = pl_module.predict(mesh_input)
y_pred = y_pred.cpu().reshape(xx.shape) y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
self.log_and_display(trainer, pl_module)
class VisSiameseGLVQ2D(Vis2DAbstract): class VisSiameseGLVQ2D(Vis2DAbstract):
def __init__(self, *args, map_protos=True, **kwargs): def __init__(self, *args, map_protos=True, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.map_protos = map_protos self.map_protos = map_protos
def on_epoch_end(self, trainer, pl_module): def visualize(self, pl_module):
if not self.precheck(trainer):
return True
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
@ -175,18 +198,14 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
y_pred = y_pred.cpu().reshape(xx.shape) y_pred = y_pred.cpu().reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
self.log_and_display(trainer, pl_module)
class VisGMLVQ2D(Vis2DAbstract): class VisGMLVQ2D(Vis2DAbstract):
def __init__(self, *args, ev_proj=True, **kwargs): def __init__(self, *args, ev_proj=True, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.ev_proj = ev_proj self.ev_proj = ev_proj
def on_epoch_end(self, trainer, pl_module): def visualize(self, pl_module):
if not self.precheck(trainer):
return True
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
@ -208,18 +227,13 @@ class VisGMLVQ2D(Vis2DAbstract):
if self.show_protos: if self.show_protos:
self.plot_protos(ax, protos, plabels) self.plot_protos(ax, protos, plabels)
self.log_and_display(trainer, pl_module)
class VisCBC2D(Vis2DAbstract): class VisCBC2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
def visualize(self, pl_module):
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
protos = pl_module.components protos = pl_module.components
ax = self.setup_ax(xlabel="Data dimension 1", ax = self.setup_ax()
ylabel="Data dimension 2")
self.plot_data(ax, x_train, y_train) self.plot_data(ax, x_train, y_train)
self.plot_protos(ax, protos, "w") self.plot_protos(ax, protos, "w")
x = np.vstack((x_train, protos)) x = np.vstack((x_train, protos))
@ -231,20 +245,15 @@ class VisCBC2D(Vis2DAbstract):
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
self.log_and_display(trainer, pl_module)
class VisNG2D(Vis2DAbstract): class VisNG2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module):
if not self.precheck(trainer):
return True
def visualize(self, pl_module):
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
protos = pl_module.prototypes protos = pl_module.prototypes
cmat = pl_module.topology_layer.cmat.cpu().numpy() cmat = pl_module.topology_layer.cmat.cpu().numpy()
ax = self.setup_ax(xlabel="Data dimension 1", ax = self.setup_ax()
ylabel="Data dimension 2")
self.plot_data(ax, x_train, y_train) self.plot_data(ax, x_train, y_train)
self.plot_protos(ax, protos, "w") self.plot_protos(ax, protos, "w")
@ -258,10 +267,27 @@ class VisNG2D(Vis2DAbstract):
"k-", "k-",
) )
self.log_and_display(trainer, pl_module)
class VisSpectralProtos(Vis2DAbstract):
def visualize(self, pl_module):
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
ax = self.setup_ax()
colors = get_colors(vmax=max(plabels), vmin=min(plabels))
for p, pl in zip(protos, plabels):
ax.plot(p, c=colors[int(pl)])
if self.legend_labels:
handles = get_legend_handles(
colors,
self.legend_labels,
marker="lines",
)
ax.legend(handles=handles)
class VisImgComp(Vis2DAbstract): class VisImgComp(Vis2DAbstract):
def __init__(self, def __init__(self,
*args, *args,
random_data=0, random_data=0,
@ -277,9 +303,13 @@ class VisImgComp(Vis2DAbstract):
self.add_embedding = add_embedding self.add_embedding = add_embedding
self.embedding_data = embedding_data self.embedding_data = embedding_data
def on_train_start(self, trainer, pl_module): def on_train_start(self, _, pl_module):
if isinstance(pl_module.logger, TensorBoardLogger):
tb = pl_module.logger.experiment tb = pl_module.logger.experiment
# Add embedding
if self.add_embedding: if self.add_embedding:
if self.x_train is not None and self.y_train is not None:
ind = np.random.choice(len(self.x_train), ind = np.random.choice(len(self.x_train),
size=self.embedding_data, size=self.embedding_data,
replace=False) replace=False)
@ -290,17 +320,28 @@ class VisImgComp(Vis2DAbstract):
tag="Data Embedding", tag="Data Embedding",
metadata=self.y_train[ind], metadata=self.y_train[ind],
metadata_header=None) metadata_header=None)
else:
raise ValueError("No data for add embedding flag")
# Random Data
if self.random_data: if self.random_data:
if self.x_train is not None:
ind = np.random.choice(len(self.x_train), ind = np.random.choice(len(self.x_train),
size=self.random_data, size=self.random_data,
replace=False) replace=False)
data = self.x_train[ind] data = self.x_train[ind]
grid = torchvision.utils.make_grid(data, nrow=self.num_columns) grid = torchvision.utils.make_grid(data,
nrow=self.num_columns)
tb.add_image(tag="Data", tb.add_image(tag="Data",
img_tensor=grid, img_tensor=grid,
global_step=None, global_step=None,
dataformats=self.dataformats) dataformats=self.dataformats)
else:
raise ValueError("No data for random data flag")
else:
warnings.warn(
f"TensorBoardLogger is required, got {type(pl_module.logger)}")
def add_to_tensorboard(self, trainer, pl_module): def add_to_tensorboard(self, trainer, pl_module):
tb = pl_module.logger.experiment tb = pl_module.logger.experiment
@ -314,14 +355,9 @@ class VisImgComp(Vis2DAbstract):
dataformats=self.dataformats, dataformats=self.dataformats,
) )
def on_epoch_end(self, trainer, pl_module): def visualize(self, pl_module):
if not self.precheck(trainer):
return True
if self.show: if self.show:
components = pl_module.components components = pl_module.components
grid = torchvision.utils.make_grid(components, grid = torchvision.utils.make_grid(components,
nrow=self.num_columns) nrow=self.num_columns)
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap) plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
self.log_and_display(trainer, pl_module)

View File

@ -1,14 +0,0 @@
"""prototorch.models test suite."""
import unittest
class TestDummy(unittest.TestCase):
def setUp(self):
pass
def test_dummy(self):
pass
def tearDown(self):
pass

193
tests/test_models.py Normal file
View File

@ -0,0 +1,193 @@
"""prototorch.models test suite."""
import prototorch.models
def test_glvq_model_build():
model = prototorch.models.GLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_glvq1_model_build():
model = prototorch.models.GLVQ1(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_glvq21_model_build():
model = prototorch.models.GLVQ1(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_gmlvq_model_build():
model = prototorch.models.GMLVQ(
{
"distribution": (3, 2),
"input_dim": 2,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_grlvq_model_build():
model = prototorch.models.GRLVQ(
{
"distribution": (3, 2),
"input_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_gtlvq_model_build():
model = prototorch.models.GTLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_lgmlvq_model_build():
model = prototorch.models.LGMLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_image_glvq_model_build():
model = prototorch.models.ImageGLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_image_gmlvq_model_build():
model = prototorch.models.ImageGMLVQ(
{
"distribution": (3, 2),
"input_dim": 16,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_image_gtlvq_model_build():
model = prototorch.models.ImageGMLVQ(
{
"distribution": (3, 2),
"input_dim": 16,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(16),
)
def test_siamese_glvq_model_build():
model = prototorch.models.SiameseGLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_siamese_gmlvq_model_build():
model = prototorch.models.SiameseGMLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_siamese_gtlvq_model_build():
model = prototorch.models.SiameseGTLVQ(
{
"distribution": (3, 2),
"input_dim": 4,
"latent_dim": 2,
},
prototypes_initializer=prototorch.initializers.RNCI(4),
)
def test_knn_model_build():
train_ds = prototorch.datasets.Iris(dims=[0, 2])
model = prototorch.models.KNN(dict(k=3), data=train_ds)
def test_lvq1_model_build():
model = prototorch.models.LVQ1(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_lvq21_model_build():
model = prototorch.models.LVQ21(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_median_lvq_model_build():
model = prototorch.models.MedianLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_celvq_model_build():
model = prototorch.models.CELVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_rslvq_model_build():
model = prototorch.models.RSLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_slvq_model_build():
model = prototorch.models.SLVQ(
{"distribution": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_growing_neural_gas_model_build():
model = prototorch.models.GrowingNeuralGas(
{"num_prototypes": 5},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_kohonen_som_model_build():
model = prototorch.models.KohonenSOM(
{"shape": (3, 2)},
prototypes_initializer=prototorch.initializers.RNCI(2),
)
def test_neural_gas_model_build():
model = prototorch.models.NeuralGas(
{"num_prototypes": 5},
prototypes_initializer=prototorch.initializers.RNCI(2),
)