[BUG] NaN when training with selection initializer

How to reproduce:
Run the `glvq_spiral.py` file under `examples/`.

The error seems to occur when using a lot of prototypes in combination with the
`StratifiedSelectionInitializer`. Using only a prototype per class, or using
another initializer like the `StratifiedMeanInitializer` seems to make the
problem go away.
This commit is contained in:
Jensun Ravichandran 2021-04-29 19:09:10 +02:00
parent 8bad54fc2d
commit fef73e2fbf
2 changed files with 82 additions and 31 deletions

56
examples/glvq_spiral.py Normal file
View File

@ -0,0 +1,56 @@
"""GLVQ example using the spiral dataset."""
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from prototorch.datasets.spiral import make_spiral
from prototorch.models.callbacks.visualization import VisGLVQ2D
from prototorch.models.glvq import GLVQ
from torch.utils.data import DataLoader
class StopOnNaN(pl.Callback):
def __init__(self, param):
super().__init__()
self.param = param
def on_epoch_end(self, trainer, pl_module, logs={}):
if torch.isnan(self.param).any():
raise ValueError("NaN encountered. Stopping.")
if __name__ == "__main__":
# Dataset
x_train, y_train = make_spiral(n_samples=600, noise=0.6)
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
# Hyperparameters
hparams = dict(
nclasses=2,
prototypes_per_class=20,
# prototype_initializer=cinit.SSI(torch.Tensor(x_train),
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
torch.Tensor(y_train)),
lr=0.01,
)
# Initialize the model
model = GLVQ(hparams)
# Callbacks
vis = VisGLVQ2D(x_train, y_train)
# vis = VisGLVQ2D(x_train, y_train, show_last_only=True, block=True)
snan = StopOnNaN(model.proto_layer.components)
# Setup trainer
trainer = pl.Trainer(
max_epochs=200,
callbacks=[vis, snan],
)
# Training loop
trainer.fit(model, train_loader)

View File

@ -261,20 +261,29 @@ class VisPointProtos(VisWeights):
self._show_and_save(epoch) self._show_and_save(epoch)
class VisGLVQ2D(pl.Callback): class Vis2DAbstract(pl.Callback):
def __init__(self, def __init__(self,
x_train, x_train,
y_train, y_train,
title="Prototype Visualization", title="Prototype Visualization",
cmap="viridis"): cmap="viridis",
show_last_only=False,
block=False):
super().__init__() super().__init__()
self.x_train = x_train self.x_train = x_train
self.y_train = y_train self.y_train = y_train
self.title = title self.title = title
self.fig = plt.figure(self.title) self.fig = plt.figure(self.title)
self.cmap = cmap self.cmap = cmap
self.show_last_only = show_last_only
self.block = block
class VisGLVQ2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module): def on_epoch_end(self, trainer, pl_module):
if self.show_last_only:
if trainer.current_epoch != trainer.max_epochs - 1:
return
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
@ -306,22 +315,13 @@ class VisGLVQ2D(pl.Callback):
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1) if not self.block:
plt.pause(0.01)
else:
plt.show(block=True)
class VisSiameseGLVQ2D(pl.Callback): class VisSiameseGLVQ2D(Vis2DAbstract):
def __init__(self,
x_train,
y_train,
title="Prototype Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module): def on_epoch_end(self, trainer, pl_module):
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
@ -361,22 +361,14 @@ class VisSiameseGLVQ2D(pl.Callback):
global_step=trainer.current_epoch, global_step=trainer.current_epoch,
close=False, close=False,
) )
plt.pause(0.1)
if not self.block:
plt.pause(0.01)
else:
plt.show(block=True)
class VisNG2D(pl.Callback): class VisNG2D(Vis2DAbstract):
def __init__(self,
x_train,
y_train,
title="Neural Gas Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module): def on_epoch_end(self, trainer, pl_module):
protos = pl_module.prototypes protos = pl_module.prototypes
cmat = pl_module.topology_layer.cmat.cpu().numpy() cmat = pl_module.topology_layer.cmat.cpu().numpy()
@ -410,4 +402,7 @@ class VisNG2D(pl.Callback):
"k-", "k-",
) )
if not self.block:
plt.pause(0.01) plt.pause(0.01)
else:
plt.show(block=True)