[BUG] NaN when training with selection initializer
How to reproduce: Run the `glvq_spiral.py` file under `examples/`. The error seems to occur when using a lot of prototypes in combination with the `StratifiedSelectionInitializer`. Using only a prototype per class, or using another initializer like the `StratifiedMeanInitializer` seems to make the problem go away.
This commit is contained in:
parent
8bad54fc2d
commit
fef73e2fbf
56
examples/glvq_spiral.py
Normal file
56
examples/glvq_spiral.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
"""GLVQ example using the spiral dataset."""
|
||||||
|
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from prototorch.components import initializers as cinit
|
||||||
|
from prototorch.datasets.abstract import NumpyDataset
|
||||||
|
from prototorch.datasets.spiral import make_spiral
|
||||||
|
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
||||||
|
from prototorch.models.glvq import GLVQ
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
|
||||||
|
class StopOnNaN(pl.Callback):
|
||||||
|
def __init__(self, param):
|
||||||
|
super().__init__()
|
||||||
|
self.param = param
|
||||||
|
|
||||||
|
def on_epoch_end(self, trainer, pl_module, logs={}):
|
||||||
|
if torch.isnan(self.param).any():
|
||||||
|
raise ValueError("NaN encountered. Stopping.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Dataset
|
||||||
|
x_train, y_train = make_spiral(n_samples=600, noise=0.6)
|
||||||
|
train_ds = NumpyDataset(x_train, y_train)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
nclasses=2,
|
||||||
|
prototypes_per_class=20,
|
||||||
|
# prototype_initializer=cinit.SSI(torch.Tensor(x_train),
|
||||||
|
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
||||||
|
torch.Tensor(y_train)),
|
||||||
|
lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = GLVQ(hparams)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = VisGLVQ2D(x_train, y_train)
|
||||||
|
# vis = VisGLVQ2D(x_train, y_train, show_last_only=True, block=True)
|
||||||
|
snan = StopOnNaN(model.proto_layer.components)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer(
|
||||||
|
max_epochs=200,
|
||||||
|
callbacks=[vis, snan],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@ -261,20 +261,29 @@ class VisPointProtos(VisWeights):
|
|||||||
self._show_and_save(epoch)
|
self._show_and_save(epoch)
|
||||||
|
|
||||||
|
|
||||||
class VisGLVQ2D(pl.Callback):
|
class Vis2DAbstract(pl.Callback):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
x_train,
|
x_train,
|
||||||
y_train,
|
y_train,
|
||||||
title="Prototype Visualization",
|
title="Prototype Visualization",
|
||||||
cmap="viridis"):
|
cmap="viridis",
|
||||||
|
show_last_only=False,
|
||||||
|
block=False):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.x_train = x_train
|
self.x_train = x_train
|
||||||
self.y_train = y_train
|
self.y_train = y_train
|
||||||
self.title = title
|
self.title = title
|
||||||
self.fig = plt.figure(self.title)
|
self.fig = plt.figure(self.title)
|
||||||
self.cmap = cmap
|
self.cmap = cmap
|
||||||
|
self.show_last_only = show_last_only
|
||||||
|
self.block = block
|
||||||
|
|
||||||
|
|
||||||
|
class VisGLVQ2D(Vis2DAbstract):
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
|
if self.show_last_only:
|
||||||
|
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||||
|
return
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
plabels = pl_module.prototype_labels
|
plabels = pl_module.prototype_labels
|
||||||
x_train, y_train = self.x_train, self.y_train
|
x_train, y_train = self.x_train, self.y_train
|
||||||
@ -306,22 +315,13 @@ class VisGLVQ2D(pl.Callback):
|
|||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||||
plt.pause(0.1)
|
if not self.block:
|
||||||
|
plt.pause(0.01)
|
||||||
|
else:
|
||||||
|
plt.show(block=True)
|
||||||
|
|
||||||
|
|
||||||
class VisSiameseGLVQ2D(pl.Callback):
|
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||||
def __init__(self,
|
|
||||||
x_train,
|
|
||||||
y_train,
|
|
||||||
title="Prototype Visualization",
|
|
||||||
cmap="viridis"):
|
|
||||||
super().__init__()
|
|
||||||
self.x_train = x_train
|
|
||||||
self.y_train = y_train
|
|
||||||
self.title = title
|
|
||||||
self.fig = plt.figure(self.title)
|
|
||||||
self.cmap = cmap
|
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
plabels = pl_module.prototype_labels
|
plabels = pl_module.prototype_labels
|
||||||
@ -361,22 +361,14 @@ class VisSiameseGLVQ2D(pl.Callback):
|
|||||||
global_step=trainer.current_epoch,
|
global_step=trainer.current_epoch,
|
||||||
close=False,
|
close=False,
|
||||||
)
|
)
|
||||||
plt.pause(0.1)
|
|
||||||
|
if not self.block:
|
||||||
|
plt.pause(0.01)
|
||||||
|
else:
|
||||||
|
plt.show(block=True)
|
||||||
|
|
||||||
|
|
||||||
class VisNG2D(pl.Callback):
|
class VisNG2D(Vis2DAbstract):
|
||||||
def __init__(self,
|
|
||||||
x_train,
|
|
||||||
y_train,
|
|
||||||
title="Neural Gas Visualization",
|
|
||||||
cmap="viridis"):
|
|
||||||
super().__init__()
|
|
||||||
self.x_train = x_train
|
|
||||||
self.y_train = y_train
|
|
||||||
self.title = title
|
|
||||||
self.fig = plt.figure(self.title)
|
|
||||||
self.cmap = cmap
|
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
protos = pl_module.prototypes
|
protos = pl_module.prototypes
|
||||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||||
@ -410,4 +402,7 @@ class VisNG2D(pl.Callback):
|
|||||||
"k-",
|
"k-",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if not self.block:
|
||||||
plt.pause(0.01)
|
plt.pause(0.01)
|
||||||
|
else:
|
||||||
|
plt.show(block=True)
|
||||||
|
Loading…
Reference in New Issue
Block a user