[BUG] NaN when training with selection initializer
How to reproduce: Run the `glvq_spiral.py` file under `examples/`. The error seems to occur when using a lot of prototypes in combination with the `StratifiedSelectionInitializer`. Using only a prototype per class, or using another initializer like the `StratifiedMeanInitializer` seems to make the problem go away.
This commit is contained in:
56
examples/glvq_spiral.py
Normal file
56
examples/glvq_spiral.py
Normal file
@@ -0,0 +1,56 @@
|
||||
"""GLVQ example using the spiral dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.datasets.spiral import make_spiral
|
||||
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class StopOnNaN(pl.Callback):
|
||||
def __init__(self, param):
|
||||
super().__init__()
|
||||
self.param = param
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module, logs={}):
|
||||
if torch.isnan(self.param).any():
|
||||
raise ValueError("NaN encountered. Stopping.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = make_spiral(n_samples=600, noise=0.6)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=20,
|
||||
# prototype_initializer=cinit.SSI(torch.Tensor(x_train),
|
||||
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
||||
torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(hparams)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(x_train, y_train)
|
||||
# vis = VisGLVQ2D(x_train, y_train, show_last_only=True, block=True)
|
||||
snan = StopOnNaN(model.proto_layer.components)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=200,
|
||||
callbacks=[vis, snan],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
Reference in New Issue
Block a user