Add validation and test logic

This commit is contained in:
Jensun Ravichandran
2021-05-19 16:30:19 +02:00
parent 7700bb7f8d
commit fdf9443a2c
4 changed files with 65 additions and 24 deletions

View File

@@ -52,7 +52,7 @@ class SiamesePrototypeModel(pl.LightningModule):
backbone.
"""
# model.eval() # ?!
self.eval()
with torch.no_grad():
protos, plabels = self.proto_layer()
if map_protos:

View File

@@ -32,7 +32,7 @@ class GLVQ(AbstractPrototypeModel):
prototype_initializer = kwargs.get("prototype_initializer", None)
# Default Values
self.hparams.setdefault("transfer_function", "identity")
self.hparams.setdefault("transfer_fn", "identity")
self.hparams.setdefault("transfer_beta", 10.0)
self.hparams.setdefault("lr", 0.01)
@@ -40,8 +40,8 @@ class GLVQ(AbstractPrototypeModel):
distribution=self.hparams.distribution,
initializer=prototype_initializer)
self.transfer_function = get_activation(self.hparams.transfer_function)
self.train_acc = torchmetrics.Accuracy()
self.transfer_fn = get_activation(self.hparams.transfer_fn)
self.acc_metric = torchmetrics.Accuracy()
self.loss = glvq_loss
@@ -54,18 +54,18 @@ class GLVQ(AbstractPrototypeModel):
dis = self.distance_fn(x, protos)
return dis
def log_acc(self, distances, targets):
def log_acc(self, distances, targets, tag):
plabels = self.proto_layer.component_labels
# Compute training accuracy
with torch.no_grad():
preds = wtac(distances, plabels)
self.train_acc(preds.int(), targets.int())
self.acc_metric(preds.int(), targets.int())
# `.int()` because FloatTensors are assumed to be class probabilities
self.log("acc",
self.train_acc,
self.log(tag,
self.acc_metric,
on_step=False,
on_epoch=True,
prog_bar=True,
@@ -76,18 +76,50 @@ class GLVQ(AbstractPrototypeModel):
dis = self(x)
plabels = self.proto_layer.component_labels
mu = self.loss(dis, y, prototype_labels=plabels)
batch_loss = self.transfer_function(mu,
train_batch_loss = self.transfer_fn(mu,
beta=self.hparams.transfer_beta)
loss = batch_loss.sum(dim=0)
train_loss = train_batch_loss.sum(dim=0)
# Logging
self.log("train_loss", loss)
self.log_acc(dis, y)
self.log("train_loss", train_loss)
self.log_acc(dis, y, tag="train_acc")
return loss
return train_loss
def validation_step(self, val_batch, batch_idx):
# `model.eval()` and `torch.no_grad()` are called automatically for
# validation.
x, y = val_batch
dis = self(x)
plabels = self.proto_layer.component_labels
mu = self.loss(dis, y, prototype_labels=plabels)
val_batch_loss = self.transfer_fn(mu, beta=self.hparams.transfer_beta)
val_loss = val_batch_loss.sum(dim=0)
# Logging
self.log("val_loss", val_loss)
self.log_acc(dis, y, tag="val_acc")
return val_loss
def test_step(self, test_batch, batch_idx):
# `model.eval()` and `torch.no_grad()` are called automatically for
# testing.
x, y = test_batch
dis = self(x)
plabels = self.proto_layer.component_labels
mu = self.loss(dis, y, prototype_labels=plabels)
test_batch_loss = self.transfer_fn(mu, beta=self.hparams.transfer_beta)
test_loss = test_batch_loss.sum(dim=0)
# Logging
self.log("test_loss", test_loss)
self.log_acc(dis, y, tag="test_acc")
return test_loss
def predict(self, x):
# model.eval() # ?!
self.eval()
with torch.no_grad():
d = self(x)
plabels = self.proto_layer.component_labels
@@ -241,7 +273,7 @@ class LVQ1(NonGradientGLVQ):
strict=False)
# Logging
self.log_acc(dis, y)
self.log_acc(dis, y, tag="train_acc")
return None
@@ -270,7 +302,7 @@ class LVQ21(NonGradientGLVQ):
strict=False)
# Logging
self.log_acc(dis, y)
self.log_acc(dis, y, tag="train_acc")
return None