feat(vis): 2D EV projection for GMLVQ
This commit is contained in:
parent
7d4a041df2
commit
fa928afe2c
58
examples/gmlvq_iris.py
Normal file
58
examples/gmlvq_iris.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
"""GMLVQ example using the Iris dataset."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from torch.optim.lr_scheduler import ExponentialLR
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
train_ds = pt.datasets.Iris()
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
input_dim=4,
|
||||||
|
latent_dim=4,
|
||||||
|
distribution={
|
||||||
|
"num_classes": 3,
|
||||||
|
"per_class": 2
|
||||||
|
},
|
||||||
|
proto_lr=0.01,
|
||||||
|
bb_lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.GMLVQ(
|
||||||
|
hparams,
|
||||||
|
optimizer=torch.optim.Adam,
|
||||||
|
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||||
|
lr_scheduler=ExponentialLR,
|
||||||
|
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Compute intermediate input and output sizes
|
||||||
|
model.example_input_array = torch.zeros(4, 4)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = pt.models.VisGMLVQ2D(data=train_ds)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
callbacks=[vis],
|
||||||
|
weights_summary="full",
|
||||||
|
accelerator="ddp",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@ -251,6 +251,12 @@ class GMLVQ(GLVQ):
|
|||||||
def omega_matrix(self):
|
def omega_matrix(self):
|
||||||
return self._omega.detach().cpu()
|
return self._omega.detach().cpu()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lambda_matrix(self):
|
||||||
|
omega = self._omega.detach() # (input_dim, latent_dim)
|
||||||
|
lam = omega @ omega.T
|
||||||
|
return lam.detach().cpu()
|
||||||
|
|
||||||
def compute_distances(self, x):
|
def compute_distances(self, x):
|
||||||
protos, _ = self.proto_layer()
|
protos, _ = self.proto_layer()
|
||||||
distances = self.distance_layer(x, protos, self._omega)
|
distances = self.distance_layer(x, protos, self._omega)
|
||||||
|
@ -178,6 +178,39 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
|||||||
self.log_and_display(trainer, pl_module)
|
self.log_and_display(trainer, pl_module)
|
||||||
|
|
||||||
|
|
||||||
|
class VisGMLVQ2D(Vis2DAbstract):
|
||||||
|
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.ev_proj = ev_proj
|
||||||
|
|
||||||
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
|
if not self.precheck(trainer):
|
||||||
|
return True
|
||||||
|
|
||||||
|
protos = pl_module.prototypes
|
||||||
|
plabels = pl_module.prototype_labels
|
||||||
|
x_train, y_train = self.x_train, self.y_train
|
||||||
|
device = pl_module.device
|
||||||
|
omega = pl_module._omega.detach()
|
||||||
|
lam = omega @ omega.T
|
||||||
|
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||||
|
with torch.no_grad():
|
||||||
|
x_train = torch.Tensor(x_train).to(device)
|
||||||
|
x_train = x_train @ u
|
||||||
|
x_train = x_train.cpu().detach()
|
||||||
|
if self.show_protos:
|
||||||
|
with torch.no_grad():
|
||||||
|
protos = torch.Tensor(protos).to(device)
|
||||||
|
protos = protos @ u
|
||||||
|
protos = protos.cpu().detach()
|
||||||
|
ax = self.setup_ax()
|
||||||
|
self.plot_data(ax, x_train, y_train)
|
||||||
|
if self.show_protos:
|
||||||
|
self.plot_protos(ax, protos, plabels)
|
||||||
|
|
||||||
|
self.log_and_display(trainer, pl_module)
|
||||||
|
|
||||||
|
|
||||||
class VisCBC2D(Vis2DAbstract):
|
class VisCBC2D(Vis2DAbstract):
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
if not self.precheck(trainer):
|
if not self.precheck(trainer):
|
||||||
|
Loading…
Reference in New Issue
Block a user