feat(vis): 2D EV projection for GMLVQ
This commit is contained in:
58
examples/gmlvq_iris.py
Normal file
58
examples/gmlvq_iris.py
Normal file
@@ -0,0 +1,58 @@
|
||||
"""GMLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=4,
|
||||
latent_dim=4,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"per_class": 2
|
||||
},
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 4)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGMLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
Reference in New Issue
Block a user