Add GMLVQ examples
This commit is contained in:
parent
a1ac5a70c7
commit
f402eea884
@ -46,13 +46,13 @@ To assist in the development process, you may also find it useful to install
|
|||||||
- GLVQ
|
- GLVQ
|
||||||
- Siamese GLVQ
|
- Siamese GLVQ
|
||||||
- Neural Gas
|
- Neural Gas
|
||||||
|
- GMLVQ
|
||||||
|
- Limited-Rank GMLVQ
|
||||||
|
|
||||||
## Work in Progress
|
## Work in Progress
|
||||||
|
|
||||||
- CBC
|
- CBC
|
||||||
- LVQMLN
|
- LVQMLN
|
||||||
- GMLVQ
|
|
||||||
- Limited-Rank GMLVQ
|
|
||||||
|
|
||||||
## Planned models
|
## Planned models
|
||||||
|
|
||||||
@ -62,3 +62,4 @@ To assist in the development process, you may also find it useful to install
|
|||||||
- PLVQ
|
- PLVQ
|
||||||
- SILVQ
|
- SILVQ
|
||||||
- KNN
|
- KNN
|
||||||
|
- LVQ1
|
||||||
|
47
examples/gmlvq_iris.py
Normal file
47
examples/gmlvq_iris.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
||||||
|
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from prototorch.components import initializers as cinit
|
||||||
|
from prototorch.datasets.abstract import NumpyDataset
|
||||||
|
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||||
|
from prototorch.models.glvq import GMLVQ
|
||||||
|
from sklearn.datasets import load_iris
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Dataset
|
||||||
|
x_train, y_train = load_iris(return_X_y=True)
|
||||||
|
train_ds = NumpyDataset(x_train, y_train)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
nclasses=3,
|
||||||
|
prototypes_per_class=1,
|
||||||
|
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
||||||
|
torch.Tensor(y_train)),
|
||||||
|
input_dim=x_train.shape[1],
|
||||||
|
latent_dim=2,
|
||||||
|
lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = GMLVQ(hparams)
|
||||||
|
|
||||||
|
# Model summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = VisSiameseGLVQ2D(x_train, y_train)
|
||||||
|
|
||||||
|
# Namespace hook for the visualization to work
|
||||||
|
model.backbone = model.omega_layer
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
47
examples/gmlvq_tecator.py
Normal file
47
examples/gmlvq_tecator.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
"""GMLVQ example using the Tecator dataset."""
|
||||||
|
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from prototorch.components import initializers as cinit
|
||||||
|
from prototorch.datasets.tecator import Tecator
|
||||||
|
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||||
|
from prototorch.models.glvq import GMLVQ
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Dataset
|
||||||
|
train_ds = Tecator(root="./datasets/", train=True)
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=32)
|
||||||
|
|
||||||
|
# Grab the full dataset to warm-start prototypes
|
||||||
|
x, y = next(iter(DataLoader(train_ds, batch_size=len(train_ds))))
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
nclasses=2,
|
||||||
|
prototypes_per_class=2,
|
||||||
|
prototype_initializer=cinit.SMI(x, y),
|
||||||
|
input_dim=x.shape[1],
|
||||||
|
latent_dim=2,
|
||||||
|
lr=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = GMLVQ(hparams)
|
||||||
|
|
||||||
|
# Model summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = VisSiameseGLVQ2D(x, y)
|
||||||
|
|
||||||
|
# Namespace hook for the visualization to work
|
||||||
|
model.backbone = model.omega_layer
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@ -94,11 +94,13 @@ class SiameseGLVQ(GLVQ):
|
|||||||
hparams,
|
hparams,
|
||||||
backbone_module=torch.nn.Identity,
|
backbone_module=torch.nn.Identity,
|
||||||
backbone_params={},
|
backbone_params={},
|
||||||
|
sync=True,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
self.backbone = backbone_module(**backbone_params)
|
self.backbone = backbone_module(**backbone_params)
|
||||||
self.backbone_dependent = backbone_module(
|
self.backbone_dependent = backbone_module(
|
||||||
**backbone_params).requires_grad_(False)
|
**backbone_params).requires_grad_(False)
|
||||||
|
self.sync = sync
|
||||||
|
|
||||||
def sync_backbones(self):
|
def sync_backbones(self):
|
||||||
master_state = self.backbone.state_dict()
|
master_state = self.backbone.state_dict()
|
||||||
@ -117,6 +119,7 @@ class SiameseGLVQ(GLVQ):
|
|||||||
return proto_opt
|
return proto_opt
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
if self.sync:
|
||||||
self.sync_backbones()
|
self.sync_backbones()
|
||||||
protos, _ = self.proto_layer()
|
protos, _ = self.proto_layer()
|
||||||
latent_x = self.backbone(x)
|
latent_x = self.backbone(x)
|
||||||
@ -145,7 +148,7 @@ class GMLVQ(GLVQ):
|
|||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
self.omega_layer = torch.nn.Linear(self.hparams.input_dim,
|
self.omega_layer = torch.nn.Linear(self.hparams.input_dim,
|
||||||
self.latent_dim,
|
self.hparams.latent_dim,
|
||||||
bias=False)
|
bias=False)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
@ -155,6 +158,21 @@ class GMLVQ(GLVQ):
|
|||||||
dis = squared_euclidean_distance(latent_x, latent_protos)
|
dis = squared_euclidean_distance(latent_x, latent_protos)
|
||||||
return dis
|
return dis
|
||||||
|
|
||||||
|
def predict_latent(self, x):
|
||||||
|
"""Predict `x` assuming it is already embedded in the latent space.
|
||||||
|
|
||||||
|
Only the prototypes are embedded in the latent space using the
|
||||||
|
backbone.
|
||||||
|
|
||||||
|
"""
|
||||||
|
# model.eval() # ?!
|
||||||
|
with torch.no_grad():
|
||||||
|
protos, plabels = self.proto_layer()
|
||||||
|
latent_protos = self.omega_layer(protos)
|
||||||
|
d = squared_euclidean_distance(x, latent_protos)
|
||||||
|
y_pred = wtac(d, plabels)
|
||||||
|
return y_pred.numpy()
|
||||||
|
|
||||||
|
|
||||||
class LVQMLN(GLVQ):
|
class LVQMLN(GLVQ):
|
||||||
"""Learning Vector Quantization Multi-Layer Network.
|
"""Learning Vector Quantization Multi-Layer Network.
|
||||||
|
Loading…
Reference in New Issue
Block a user