Add GMLVQ examples
This commit is contained in:
47
examples/gmlvq_iris.py
Normal file
47
examples/gmlvq_iris.py
Normal file
@@ -0,0 +1,47 @@
|
||||
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import GMLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
||||
torch.Tensor(y_train)),
|
||||
input_dim=x_train.shape[1],
|
||||
latent_dim=2,
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GMLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(x_train, y_train)
|
||||
|
||||
# Namespace hook for the visualization to work
|
||||
model.backbone = model.omega_layer
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
47
examples/gmlvq_tecator.py
Normal file
47
examples/gmlvq_tecator.py
Normal file
@@ -0,0 +1,47 @@
|
||||
"""GMLVQ example using the Tecator dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.tecator import Tecator
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import GMLVQ
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
train_ds = Tecator(root="./datasets/", train=True)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=32)
|
||||
|
||||
# Grab the full dataset to warm-start prototypes
|
||||
x, y = next(iter(DataLoader(train_ds, batch_size=len(train_ds))))
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=cinit.SMI(x, y),
|
||||
input_dim=x.shape[1],
|
||||
latent_dim=2,
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GMLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(x, y)
|
||||
|
||||
# Namespace hook for the visualization to work
|
||||
model.backbone = model.omega_layer
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
Reference in New Issue
Block a user