Unclutter the examples folder
This commit is contained in:
parent
e87663d10c
commit
f2541acde9
@ -1,112 +0,0 @@
|
|||||||
"""CBC example using the Iris dataset."""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from prototorch.components import initializers as cinit
|
|
||||||
from prototorch.datasets.abstract import NumpyDataset
|
|
||||||
from sklearn.datasets import make_circles
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from prototorch.models.cbc import CBC, euclidean_similarity
|
|
||||||
|
|
||||||
|
|
||||||
class VisualizationCallback(pl.Callback):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
x_train,
|
|
||||||
y_train,
|
|
||||||
prototype_model=True,
|
|
||||||
title="Prototype Visualization",
|
|
||||||
cmap="viridis",
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.x_train = x_train
|
|
||||||
self.y_train = y_train
|
|
||||||
self.title = title
|
|
||||||
self.fig = plt.figure(self.title)
|
|
||||||
self.cmap = cmap
|
|
||||||
self.prototype_model = prototype_model
|
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
|
||||||
if self.prototype_model:
|
|
||||||
protos = pl_module.components
|
|
||||||
color = pl_module.prototype_labels
|
|
||||||
else:
|
|
||||||
protos = pl_module.components
|
|
||||||
color = "k"
|
|
||||||
ax = self.fig.gca()
|
|
||||||
ax.cla()
|
|
||||||
ax.set_title(self.title)
|
|
||||||
ax.set_xlabel("Data dimension 1")
|
|
||||||
ax.set_ylabel("Data dimension 2")
|
|
||||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
|
||||||
ax.scatter(
|
|
||||||
protos[:, 0],
|
|
||||||
protos[:, 1],
|
|
||||||
c=color,
|
|
||||||
cmap=self.cmap,
|
|
||||||
edgecolor="k",
|
|
||||||
marker="D",
|
|
||||||
s=50,
|
|
||||||
)
|
|
||||||
x = np.vstack((x_train, protos))
|
|
||||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
|
||||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
|
||||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
|
||||||
np.arange(y_min, y_max, 1 / 50))
|
|
||||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
|
||||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
|
||||||
y_pred = y_pred.reshape(xx.shape)
|
|
||||||
|
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
|
||||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
|
||||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
|
||||||
plt.pause(0.1)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Dataset
|
|
||||||
x_train, y_train = make_circles(n_samples=300,
|
|
||||||
shuffle=True,
|
|
||||||
noise=0.05,
|
|
||||||
random_state=None,
|
|
||||||
factor=0.5)
|
|
||||||
train_ds = NumpyDataset(x_train, y_train)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
||||||
|
|
||||||
# Hyperparameters
|
|
||||||
hparams = dict(
|
|
||||||
input_dim=x_train.shape[1],
|
|
||||||
nclasses=len(np.unique(y_train)),
|
|
||||||
num_components=5,
|
|
||||||
component_initializer=cinit.RandomInitializer(x_train.shape[1]),
|
|
||||||
lr=0.01,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model = CBC(
|
|
||||||
hparams,
|
|
||||||
data=[x_train, y_train],
|
|
||||||
similarity=euclidean_similarity,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Callbacks
|
|
||||||
dvis = VisualizationCallback(x_train,
|
|
||||||
y_train,
|
|
||||||
prototype_model=False,
|
|
||||||
title="CBC Circle Example")
|
|
||||||
|
|
||||||
# Setup trainer
|
|
||||||
trainer = pl.Trainer(
|
|
||||||
max_epochs=50,
|
|
||||||
callbacks=[
|
|
||||||
dvis,
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
# Training loop
|
|
||||||
trainer.fit(model, train_loader)
|
|
@ -1,128 +0,0 @@
|
|||||||
"""CBC example using the MNIST dataset.
|
|
||||||
|
|
||||||
This script also shows how to use Tensorboard for visualizing the prototypes.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torchvision
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from torchvision import transforms
|
|
||||||
from torchvision.datasets import MNIST
|
|
||||||
|
|
||||||
from prototorch.models.cbc import CBC, ImageCBC, euclidean_similarity
|
|
||||||
|
|
||||||
|
|
||||||
class VisualizationCallback(pl.Callback):
|
|
||||||
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
|
||||||
super().__init__()
|
|
||||||
self.to_shape = to_shape
|
|
||||||
self.nrow = nrow
|
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module: ImageCBC):
|
|
||||||
tb = pl_module.logger.experiment
|
|
||||||
|
|
||||||
# components
|
|
||||||
components = pl_module.components
|
|
||||||
components_img = components.reshape(self.to_shape)
|
|
||||||
grid = torchvision.utils.make_grid(components_img, nrow=self.nrow)
|
|
||||||
tb.add_image(
|
|
||||||
tag="MNIST Components",
|
|
||||||
img_tensor=grid,
|
|
||||||
global_step=trainer.current_epoch,
|
|
||||||
dataformats="CHW",
|
|
||||||
)
|
|
||||||
# Reasonings
|
|
||||||
reasonings = pl_module.reasonings
|
|
||||||
tb.add_images(
|
|
||||||
tag="MNIST Reasoning",
|
|
||||||
img_tensor=reasonings,
|
|
||||||
global_step=trainer.current_epoch,
|
|
||||||
dataformats="NCHW",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Arguments
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("--epochs",
|
|
||||||
type=int,
|
|
||||||
default=10,
|
|
||||||
help="Epochs to train.")
|
|
||||||
parser.add_argument("--lr",
|
|
||||||
type=float,
|
|
||||||
default=0.001,
|
|
||||||
help="Learning rate.")
|
|
||||||
parser.add_argument("--batch_size",
|
|
||||||
type=int,
|
|
||||||
default=256,
|
|
||||||
help="Batch size.")
|
|
||||||
parser.add_argument("--gpus",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="Number of GPUs to use.")
|
|
||||||
parser.add_argument("--ppc",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="Prototypes-Per-Class.")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Dataset
|
|
||||||
mnist_train = MNIST(
|
|
||||||
"./datasets",
|
|
||||||
train=True,
|
|
||||||
download=True,
|
|
||||||
transform=transforms.Compose([
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
|
||||||
]),
|
|
||||||
)
|
|
||||||
mnist_test = MNIST(
|
|
||||||
"./datasets",
|
|
||||||
train=False,
|
|
||||||
download=True,
|
|
||||||
transform=transforms.Compose([
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
|
||||||
]),
|
|
||||||
)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
train_loader = DataLoader(mnist_train, batch_size=32)
|
|
||||||
test_loader = DataLoader(mnist_test, batch_size=32)
|
|
||||||
|
|
||||||
# Grab the full dataset to warm-start prototypes
|
|
||||||
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
|
|
||||||
x = x.view(len(mnist_train), -1)
|
|
||||||
|
|
||||||
# Hyperparameters
|
|
||||||
hparams = dict(
|
|
||||||
input_dim=28 * 28,
|
|
||||||
nclasses=10,
|
|
||||||
prototypes_per_class=args.ppc,
|
|
||||||
prototype_initializer="randn",
|
|
||||||
lr=0.01,
|
|
||||||
similarity=euclidean_similarity,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model = CBC(hparams, data=[x, y])
|
|
||||||
# Model summary
|
|
||||||
print(model)
|
|
||||||
|
|
||||||
# Callbacks
|
|
||||||
vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc)
|
|
||||||
|
|
||||||
# Setup trainer
|
|
||||||
trainer = pl.Trainer(
|
|
||||||
gpus=args.gpus, # change to use GPUs for training
|
|
||||||
max_epochs=args.epochs,
|
|
||||||
callbacks=[vis],
|
|
||||||
track_grad_norm=2,
|
|
||||||
# accelerator="ddp_cpu", # DEBUG-ONLY
|
|
||||||
# num_processes=2, # DEBUG-ONLY
|
|
||||||
)
|
|
||||||
|
|
||||||
# Training loop
|
|
||||||
trainer.fit(model, train_loader, test_loader)
|
|
@ -1,135 +0,0 @@
|
|||||||
"""CBC example using the Iris dataset."""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from prototorch.datasets.abstract import NumpyDataset
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from prototorch.models.cbc import CBC
|
|
||||||
|
|
||||||
|
|
||||||
class VisualizationCallback(pl.Callback):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
x_train,
|
|
||||||
y_train,
|
|
||||||
prototype_model=True,
|
|
||||||
title="Prototype Visualization",
|
|
||||||
cmap="viridis",
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.x_train = x_train
|
|
||||||
self.y_train = y_train
|
|
||||||
self.title = title
|
|
||||||
self.fig = plt.figure(self.title)
|
|
||||||
self.cmap = cmap
|
|
||||||
self.prototype_model = prototype_model
|
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
|
||||||
if self.prototype_model:
|
|
||||||
protos = pl_module.prototypes
|
|
||||||
color = pl_module.prototype_labels
|
|
||||||
else:
|
|
||||||
protos = pl_module.components
|
|
||||||
color = "k"
|
|
||||||
ax = self.fig.gca()
|
|
||||||
ax.cla()
|
|
||||||
ax.set_title(self.title)
|
|
||||||
ax.set_xlabel("Data dimension 1")
|
|
||||||
ax.set_ylabel("Data dimension 2")
|
|
||||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
|
||||||
ax.scatter(
|
|
||||||
protos[:, 0],
|
|
||||||
protos[:, 1],
|
|
||||||
c=color,
|
|
||||||
cmap=self.cmap,
|
|
||||||
edgecolor="k",
|
|
||||||
marker="D",
|
|
||||||
s=50,
|
|
||||||
)
|
|
||||||
x = np.vstack((x_train, protos))
|
|
||||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
|
||||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
|
||||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
|
||||||
np.arange(y_min, y_max, 1 / 50))
|
|
||||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
|
||||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
|
||||||
y_pred = y_pred.reshape(xx.shape)
|
|
||||||
|
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
|
||||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
|
||||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
|
||||||
plt.pause(0.1)
|
|
||||||
|
|
||||||
|
|
||||||
def make_spirals(n_samples=500, noise=0.3):
|
|
||||||
def get_samples(n, delta_t):
|
|
||||||
points = []
|
|
||||||
for i in range(n):
|
|
||||||
r = i / n_samples * 5
|
|
||||||
t = 1.75 * i / n * 2 * np.pi + delta_t
|
|
||||||
x = r * np.sin(t) + np.random.rand(1) * noise
|
|
||||||
y = r * np.cos(t) + np.random.rand(1) * noise
|
|
||||||
points.append([x, y])
|
|
||||||
return points
|
|
||||||
|
|
||||||
n = n_samples // 2
|
|
||||||
positive = get_samples(n=n, delta_t=0)
|
|
||||||
negative = get_samples(n=n, delta_t=np.pi)
|
|
||||||
x = np.concatenate(
|
|
||||||
[np.array(positive).reshape(n, -1),
|
|
||||||
np.array(negative).reshape(n, -1)],
|
|
||||||
axis=0)
|
|
||||||
y = np.concatenate([np.zeros(n), np.ones(n)])
|
|
||||||
return x, y
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Dataset
|
|
||||||
x_train, y_train = make_spirals(n_samples=1000, noise=0.3)
|
|
||||||
train_ds = NumpyDataset(x_train, y_train)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
||||||
|
|
||||||
# Hyperparameters
|
|
||||||
hparams = dict(
|
|
||||||
input_dim=x_train.shape[1],
|
|
||||||
nclasses=2,
|
|
||||||
prototypes_per_class=40,
|
|
||||||
prototype_initializer="stratified_random",
|
|
||||||
lr=0.05,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model_class = CBC
|
|
||||||
model = model_class(hparams, data=[x_train, y_train])
|
|
||||||
|
|
||||||
# Pure-positive reasonings
|
|
||||||
new_reasoning = torch.zeros_like(
|
|
||||||
model.reasoning_layer.reasoning_probabilities)
|
|
||||||
for i, label in enumerate(model.component_layer.prototype_labels):
|
|
||||||
new_reasoning[0][0][i][int(label)] = 1.0
|
|
||||||
|
|
||||||
model.reasoning_layer.reasoning_probabilities.data = new_reasoning
|
|
||||||
|
|
||||||
# Model summary
|
|
||||||
print(model)
|
|
||||||
|
|
||||||
# Callbacks
|
|
||||||
vis = VisualizationCallback(x_train,
|
|
||||||
y_train,
|
|
||||||
prototype_model=hasattr(model, "prototypes"))
|
|
||||||
|
|
||||||
# Setup trainer
|
|
||||||
trainer = pl.Trainer(
|
|
||||||
max_epochs=500,
|
|
||||||
callbacks=[
|
|
||||||
vis,
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
# Training loop
|
|
||||||
trainer.fit(model, train_loader)
|
|
@ -1,147 +0,0 @@
|
|||||||
"""CBC example using the spirals dataset.
|
|
||||||
|
|
||||||
This example shows how to jump start a model by transferring weights from
|
|
||||||
another more stable model.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from prototorch.datasets.abstract import NumpyDataset
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from prototorch.models.cbc import CBC
|
|
||||||
from prototorch.models.glvq import GLVQ
|
|
||||||
|
|
||||||
|
|
||||||
class VisualizationCallback(pl.Callback):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
x_train,
|
|
||||||
y_train,
|
|
||||||
prototype_model=True,
|
|
||||||
title="Prototype Visualization",
|
|
||||||
cmap="viridis",
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.x_train = x_train
|
|
||||||
self.y_train = y_train
|
|
||||||
self.title = title
|
|
||||||
self.fig = plt.figure(self.title)
|
|
||||||
self.cmap = cmap
|
|
||||||
self.prototype_model = prototype_model
|
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
|
||||||
if self.prototype_model:
|
|
||||||
protos = pl_module.prototypes
|
|
||||||
color = pl_module.prototype_labels
|
|
||||||
else:
|
|
||||||
protos = pl_module.components
|
|
||||||
color = "k"
|
|
||||||
ax = self.fig.gca()
|
|
||||||
ax.cla()
|
|
||||||
ax.set_title(self.title)
|
|
||||||
ax.set_xlabel("Data dimension 1")
|
|
||||||
ax.set_ylabel("Data dimension 2")
|
|
||||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
|
||||||
ax.scatter(
|
|
||||||
protos[:, 0],
|
|
||||||
protos[:, 1],
|
|
||||||
c=color,
|
|
||||||
cmap=self.cmap,
|
|
||||||
edgecolor="k",
|
|
||||||
marker="D",
|
|
||||||
s=50,
|
|
||||||
)
|
|
||||||
x = np.vstack((x_train, protos))
|
|
||||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
|
||||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
|
||||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
|
||||||
np.arange(y_min, y_max, 1 / 50))
|
|
||||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
|
||||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
|
||||||
y_pred = y_pred.reshape(xx.shape)
|
|
||||||
|
|
||||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
|
||||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
|
||||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
|
||||||
plt.pause(0.1)
|
|
||||||
|
|
||||||
|
|
||||||
def make_spirals(n_samples=500, noise=0.3):
|
|
||||||
def get_samples(n, delta_t):
|
|
||||||
points = []
|
|
||||||
for i in range(n):
|
|
||||||
r = i / n_samples * 5
|
|
||||||
t = 1.75 * i / n * 2 * np.pi + delta_t
|
|
||||||
x = r * np.sin(t) + np.random.rand(1) * noise
|
|
||||||
y = r * np.cos(t) + np.random.rand(1) * noise
|
|
||||||
points.append([x, y])
|
|
||||||
return points
|
|
||||||
|
|
||||||
n = n_samples // 2
|
|
||||||
positive = get_samples(n=n, delta_t=0)
|
|
||||||
negative = get_samples(n=n, delta_t=np.pi)
|
|
||||||
x = np.concatenate(
|
|
||||||
[np.array(positive).reshape(n, -1),
|
|
||||||
np.array(negative).reshape(n, -1)],
|
|
||||||
axis=0)
|
|
||||||
y = np.concatenate([np.zeros(n), np.ones(n)])
|
|
||||||
return x, y
|
|
||||||
|
|
||||||
|
|
||||||
def train(model, x_train, y_train, train_loader, epochs=100):
|
|
||||||
# Callbacks
|
|
||||||
vis = VisualizationCallback(x_train,
|
|
||||||
y_train,
|
|
||||||
prototype_model=hasattr(model, "prototypes"))
|
|
||||||
# Setup trainer
|
|
||||||
trainer = pl.Trainer(
|
|
||||||
max_epochs=epochs,
|
|
||||||
callbacks=[
|
|
||||||
vis,
|
|
||||||
],
|
|
||||||
)
|
|
||||||
# Training loop
|
|
||||||
trainer.fit(model, train_loader)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Dataset
|
|
||||||
x_train, y_train = make_spirals(n_samples=1000, noise=0.3)
|
|
||||||
train_ds = NumpyDataset(x_train, y_train)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
||||||
|
|
||||||
# Hyperparameters
|
|
||||||
hparams = dict(
|
|
||||||
input_dim=x_train.shape[1],
|
|
||||||
nclasses=2,
|
|
||||||
prototypes_per_class=40,
|
|
||||||
prototype_initializer="stratified_random",
|
|
||||||
lr=0.05,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
glvq_model = GLVQ(hparams, data=[x_train, y_train])
|
|
||||||
cbc_model = CBC(hparams, data=[x_train, y_train])
|
|
||||||
|
|
||||||
# Train GLVQ
|
|
||||||
train(glvq_model, x_train, y_train, train_loader, epochs=10)
|
|
||||||
|
|
||||||
# Transfer Prototypes
|
|
||||||
cbc_model.component_layer.load_state_dict(
|
|
||||||
glvq_model.proto_layer.state_dict())
|
|
||||||
# Pure-positive reasonings
|
|
||||||
new_reasoning = torch.zeros_like(
|
|
||||||
cbc_model.reasoning_layer.reasoning_probabilities)
|
|
||||||
for i, label in enumerate(cbc_model.component_layer.prototype_labels):
|
|
||||||
new_reasoning[0][0][i][int(label)] = 1.0
|
|
||||||
new_reasoning[1][0][i][1 - int(label)] = 1.0
|
|
||||||
|
|
||||||
cbc_model.reasoning_layer.reasoning_probabilities.data = new_reasoning
|
|
||||||
|
|
||||||
# Train CBC
|
|
||||||
train(cbc_model, x_train, y_train, train_loader, epochs=50)
|
|
@ -1,119 +0,0 @@
|
|||||||
"""GLVQ example using the MNIST dataset.
|
|
||||||
|
|
||||||
This script also shows how to use Tensorboard for visualizing the prototypes.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torchvision
|
|
||||||
from prototorch.components import initializers as cinit
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from torchvision import transforms
|
|
||||||
from torchvision.datasets import MNIST
|
|
||||||
|
|
||||||
from prototorch.models.glvq import ImageGLVQ
|
|
||||||
|
|
||||||
|
|
||||||
class VisualizationCallback(pl.Callback):
|
|
||||||
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
|
||||||
super().__init__()
|
|
||||||
self.to_shape = to_shape
|
|
||||||
self.nrow = nrow
|
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
|
||||||
protos = pl_module.proto_layer.prototypes.detach().cpu()
|
|
||||||
protos_img = protos.reshape(self.to_shape)
|
|
||||||
grid = torchvision.utils.make_grid(protos_img, nrow=self.nrow)
|
|
||||||
# grid = grid.permute((1, 2, 0))
|
|
||||||
tb = pl_module.logger.experiment
|
|
||||||
tb.add_image(
|
|
||||||
tag="MNIST Prototypes",
|
|
||||||
img_tensor=grid,
|
|
||||||
global_step=trainer.current_epoch,
|
|
||||||
dataformats="CHW",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Arguments
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("--epochs",
|
|
||||||
type=int,
|
|
||||||
default=10,
|
|
||||||
help="Epochs to train.")
|
|
||||||
parser.add_argument("--lr",
|
|
||||||
type=float,
|
|
||||||
default=0.001,
|
|
||||||
help="Learning rate.")
|
|
||||||
parser.add_argument("--batch_size",
|
|
||||||
type=int,
|
|
||||||
default=256,
|
|
||||||
help="Batch size.")
|
|
||||||
parser.add_argument("--gpus",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="Number of GPUs to use.")
|
|
||||||
parser.add_argument("--ppc",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="Prototypes-Per-Class.")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Dataset
|
|
||||||
mnist_train = MNIST(
|
|
||||||
"./datasets",
|
|
||||||
train=True,
|
|
||||||
download=True,
|
|
||||||
transform=transforms.Compose([
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
|
||||||
]),
|
|
||||||
)
|
|
||||||
mnist_test = MNIST(
|
|
||||||
"./datasets",
|
|
||||||
train=False,
|
|
||||||
download=True,
|
|
||||||
transform=transforms.Compose([
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
|
||||||
]),
|
|
||||||
)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
train_loader = DataLoader(mnist_train, batch_size=1024)
|
|
||||||
test_loader = DataLoader(mnist_test, batch_size=1024)
|
|
||||||
|
|
||||||
# Grab the full dataset to warm-start prototypes
|
|
||||||
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
|
|
||||||
x = x.view(len(mnist_train), -1)
|
|
||||||
|
|
||||||
# Hyperparameters
|
|
||||||
hparams = dict(
|
|
||||||
input_dim=28 * 28,
|
|
||||||
nclasses=10,
|
|
||||||
prototypes_per_class=1,
|
|
||||||
prototype_initializer=cinit.StratifiedMeanInitializer(x, y),
|
|
||||||
lr=args.lr,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model = ImageGLVQ(hparams)
|
|
||||||
|
|
||||||
# Model summary
|
|
||||||
print(model)
|
|
||||||
|
|
||||||
# Callbacks
|
|
||||||
vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc)
|
|
||||||
|
|
||||||
# Setup trainer
|
|
||||||
trainer = pl.Trainer(
|
|
||||||
gpus=args.gpus, # change to use GPUs for training
|
|
||||||
max_epochs=args.epochs,
|
|
||||||
callbacks=[vis],
|
|
||||||
# accelerator="ddp_cpu", # DEBUG-ONLY
|
|
||||||
# num_processes=2, # DEBUG-ONLY
|
|
||||||
)
|
|
||||||
|
|
||||||
# Training loop
|
|
||||||
trainer.fit(model, train_loader, test_loader)
|
|
@ -1,62 +0,0 @@
|
|||||||
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
|
||||||
from prototorch.components import initializers as cinit
|
|
||||||
from prototorch.datasets.abstract import NumpyDataset
|
|
||||||
from sklearn.datasets import load_iris
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
|
||||||
from prototorch.models.glvq import GRLVQ
|
|
||||||
|
|
||||||
from sklearn.preprocessing import StandardScaler
|
|
||||||
|
|
||||||
|
|
||||||
class PrintRelevanceCallback(pl.Callback):
|
|
||||||
def on_epoch_end(self, trainer, pl_module: GRLVQ):
|
|
||||||
print(pl_module.relevance_profile)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Dataset
|
|
||||||
x_train, y_train = load_iris(return_X_y=True)
|
|
||||||
x_train = x_train[:, [0, 2]]
|
|
||||||
scaler = StandardScaler()
|
|
||||||
scaler.fit(x_train)
|
|
||||||
x_train = scaler.transform(x_train)
|
|
||||||
train_ds = NumpyDataset(x_train, y_train)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
train_loader = DataLoader(train_ds,
|
|
||||||
num_workers=0,
|
|
||||||
batch_size=50,
|
|
||||||
shuffle=True)
|
|
||||||
|
|
||||||
# Hyperparameters
|
|
||||||
hparams = dict(
|
|
||||||
nclasses=3,
|
|
||||||
prototypes_per_class=1,
|
|
||||||
#prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
|
||||||
# torch.Tensor(y_train)),
|
|
||||||
prototype_initializer=cinit.UniformInitializer(2),
|
|
||||||
input_dim=x_train.shape[1],
|
|
||||||
lr=0.1,
|
|
||||||
#transfer_function="sigmoid_beta",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model = GRLVQ(hparams)
|
|
||||||
|
|
||||||
# Model summary
|
|
||||||
print(model)
|
|
||||||
|
|
||||||
# Callbacks
|
|
||||||
vis = VisSiameseGLVQ2D(x_train, y_train)
|
|
||||||
debug = PrintRelevanceCallback()
|
|
||||||
|
|
||||||
# Setup trainer
|
|
||||||
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
|
|
||||||
|
|
||||||
# Training loop
|
|
||||||
trainer.fit(model, train_loader)
|
|
@ -1,57 +0,0 @@
|
|||||||
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
|
||||||
from prototorch.components import initializers as cinit
|
|
||||||
from prototorch.datasets.abstract import NumpyDataset
|
|
||||||
from sklearn.datasets import load_iris
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
|
||||||
from prototorch.models.glvq import GRLVQ
|
|
||||||
|
|
||||||
from sklearn.preprocessing import StandardScaler
|
|
||||||
|
|
||||||
from prototorch.datasets.spiral import make_spiral
|
|
||||||
|
|
||||||
|
|
||||||
class PrintRelevanceCallback(pl.Callback):
|
|
||||||
def on_epoch_end(self, trainer, pl_module: GRLVQ):
|
|
||||||
print(pl_module.relevance_profile)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Dataset
|
|
||||||
x_train, y_train = make_spiral(n_samples=1000, noise=0.3)
|
|
||||||
train_ds = NumpyDataset(x_train, y_train)
|
|
||||||
|
|
||||||
# Dataloaders
|
|
||||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
||||||
|
|
||||||
# Hyperparameters
|
|
||||||
hparams = dict(
|
|
||||||
nclasses=2,
|
|
||||||
prototypes_per_class=20,
|
|
||||||
prototype_initializer=cinit.SSI(torch.Tensor(x_train),
|
|
||||||
torch.Tensor(y_train)),
|
|
||||||
#prototype_initializer=cinit.UniformInitializer(2),
|
|
||||||
input_dim=x_train.shape[1],
|
|
||||||
lr=0.1,
|
|
||||||
#transfer_function="sigmoid_beta",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model = GRLVQ(hparams)
|
|
||||||
|
|
||||||
# Model summary
|
|
||||||
print(model)
|
|
||||||
|
|
||||||
# Callbacks
|
|
||||||
vis = VisSiameseGLVQ2D(x_train, y_train)
|
|
||||||
debug = PrintRelevanceCallback()
|
|
||||||
|
|
||||||
# Setup trainer
|
|
||||||
trainer = pl.Trainer(max_epochs=200, callbacks=[vis, debug])
|
|
||||||
|
|
||||||
# Training loop
|
|
||||||
trainer.fit(model, train_loader)
|
|
Loading…
Reference in New Issue
Block a user