Custom non-gradient training
This commit is contained in:
parent
246719b837
commit
eefec19c9b
@ -72,6 +72,8 @@ git checkout dev
|
||||
pip install -e .[all] # \[all\] if you are using zsh or MacOS
|
||||
```
|
||||
|
||||
**Note: Please avoid installing Tensorflow in this environment.**
|
||||
|
||||
To assist in the development process, you may also find it useful to install
|
||||
`yapf`, `isort` and `autoflake`. You can install them easily with `pip`.
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .cbc import CBC
|
||||
from .glvq import (GLVQ, GMLVQ, GRLVQ, LVQ1, LVQ21, LVQMLN, ImageGLVQ,
|
||||
ImageGMLVQ, SiameseGLVQ)
|
||||
from .glvq import (GLVQ, GMLVQ, GRLVQ, GLVQ1, GLVQ21, LVQ1, LVQ21, LVQMLN,
|
||||
ImageGLVQ, ImageGMLVQ, SiameseGLVQ)
|
||||
from .knn import KNN
|
||||
from .neural_gas import NeuralGas
|
||||
from .vis import *
|
||||
|
@ -6,7 +6,8 @@ from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
sed)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.functions.losses import (_get_dp_dm, _get_matcher, glvq_loss,
|
||||
lvq1_loss, lvq21_loss)
|
||||
|
||||
from .abstract import (AbstractPrototypeModel, PrototypeImageModel,
|
||||
SiamesePrototypeModel)
|
||||
@ -33,6 +34,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
# Default Values
|
||||
self.hparams.setdefault("transfer_function", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
self.hparams.setdefault("lr", 0.01)
|
||||
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
@ -52,6 +54,23 @@ class GLVQ(AbstractPrototypeModel):
|
||||
dis = self.distance_fn(x, protos)
|
||||
return dis
|
||||
|
||||
def log_acc(self, distances, targets):
|
||||
plabels = self.proto_layer.component_labels
|
||||
|
||||
# Compute training accuracy
|
||||
with torch.no_grad():
|
||||
preds = wtac(distances, plabels)
|
||||
|
||||
self.train_acc(preds.int(), targets.int())
|
||||
# `.int()` because FloatTensors are assumed to be class probabilities
|
||||
|
||||
self.log("acc",
|
||||
self.train_acc,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
x, y = train_batch
|
||||
dis = self(x)
|
||||
@ -61,21 +80,9 @@ class GLVQ(AbstractPrototypeModel):
|
||||
beta=self.hparams.transfer_beta)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
|
||||
# Compute training accuracy
|
||||
with torch.no_grad():
|
||||
preds = wtac(dis, plabels)
|
||||
|
||||
self.train_acc(preds.int(), y.int())
|
||||
# `.int()` because FloatTensors are assumed to be class probabilities
|
||||
|
||||
# Logging
|
||||
self.log("train_loss", loss)
|
||||
self.log("acc",
|
||||
self.train_acc,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
self.log_acc(dis, y)
|
||||
|
||||
return loss
|
||||
|
||||
@ -87,6 +94,10 @@ class GLVQ(AbstractPrototypeModel):
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
def __repr__(self):
|
||||
super_repr = super().__repr__()
|
||||
return f"{super_repr}"
|
||||
|
||||
|
||||
class SiameseGLVQ(SiamesePrototypeModel, GLVQ):
|
||||
"""GLVQ in a Siamese setting.
|
||||
@ -198,7 +209,77 @@ class LVQMLN(SiamesePrototypeModel, GLVQ):
|
||||
return dis
|
||||
|
||||
|
||||
class LVQ1(GLVQ):
|
||||
class NonGradientGLVQ(GLVQ):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization = False
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class LVQ1(NonGradientGLVQ):
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self(x)
|
||||
# TODO Vectorized implementation
|
||||
|
||||
for xi, yi in zip(x, y):
|
||||
d = self(xi.view(1, -1))
|
||||
preds = wtac(d, plabels)
|
||||
w = d.argmin(1)
|
||||
if yi == preds:
|
||||
shift = xi - protos[w]
|
||||
else:
|
||||
shift = protos[w] - xi
|
||||
updated_protos = protos + 0.0
|
||||
updated_protos[w] = protos[w] + (self.hparams.lr * shift)
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class LVQ21(NonGradientGLVQ):
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self(x)
|
||||
# TODO Vectorized implementation
|
||||
|
||||
for xi, yi in zip(x, y):
|
||||
xi = xi.view(1, -1)
|
||||
yi = yi.view(1, )
|
||||
d = self(xi)
|
||||
preds = wtac(d, plabels)
|
||||
(dp, wp), (dn, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
|
||||
shiftp = xi - protos[wp]
|
||||
shiftn = protos[wn] - xi
|
||||
updated_protos = protos + 0.0
|
||||
updated_protos[wp] = protos[wp] + (self.hparams.lr * shiftp)
|
||||
updated_protos[wn] = protos[wn] + (self.hparams.lr * shiftn)
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class MedianLVQ(NonGradientGLVQ):
|
||||
...
|
||||
|
||||
|
||||
class GLVQ1(GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
@ -206,7 +287,7 @@ class LVQ1(GLVQ):
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class LVQ21(GLVQ):
|
||||
class GLVQ21(GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
Loading…
Reference in New Issue
Block a user