Custom non-gradient training

This commit is contained in:
Jensun Ravichandran
2021-05-18 19:49:16 +02:00
parent 246719b837
commit eefec19c9b
3 changed files with 101 additions and 18 deletions

View File

@@ -6,7 +6,8 @@ from prototorch.functions.competitions import wtac
from prototorch.functions.distances import (euclidean_distance, omega_distance,
sed)
from prototorch.functions.helper import get_flat
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
from prototorch.functions.losses import (_get_dp_dm, _get_matcher, glvq_loss,
lvq1_loss, lvq21_loss)
from .abstract import (AbstractPrototypeModel, PrototypeImageModel,
SiamesePrototypeModel)
@@ -33,6 +34,7 @@ class GLVQ(AbstractPrototypeModel):
# Default Values
self.hparams.setdefault("transfer_function", "identity")
self.hparams.setdefault("transfer_beta", 10.0)
self.hparams.setdefault("lr", 0.01)
self.proto_layer = LabeledComponents(
distribution=self.hparams.distribution,
@@ -52,6 +54,23 @@ class GLVQ(AbstractPrototypeModel):
dis = self.distance_fn(x, protos)
return dis
def log_acc(self, distances, targets):
plabels = self.proto_layer.component_labels
# Compute training accuracy
with torch.no_grad():
preds = wtac(distances, plabels)
self.train_acc(preds.int(), targets.int())
# `.int()` because FloatTensors are assumed to be class probabilities
self.log("acc",
self.train_acc,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True)
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
x, y = train_batch
dis = self(x)
@@ -61,21 +80,9 @@ class GLVQ(AbstractPrototypeModel):
beta=self.hparams.transfer_beta)
loss = batch_loss.sum(dim=0)
# Compute training accuracy
with torch.no_grad():
preds = wtac(dis, plabels)
self.train_acc(preds.int(), y.int())
# `.int()` because FloatTensors are assumed to be class probabilities
# Logging
self.log("train_loss", loss)
self.log("acc",
self.train_acc,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True)
self.log_acc(dis, y)
return loss
@@ -87,6 +94,10 @@ class GLVQ(AbstractPrototypeModel):
y_pred = wtac(d, plabels)
return y_pred
def __repr__(self):
super_repr = super().__repr__()
return f"{super_repr}"
class SiameseGLVQ(SiamesePrototypeModel, GLVQ):
"""GLVQ in a Siamese setting.
@@ -198,7 +209,77 @@ class LVQMLN(SiamesePrototypeModel, GLVQ):
return dis
class LVQ1(GLVQ):
class NonGradientGLVQ(GLVQ):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
raise NotImplementedError
class LVQ1(NonGradientGLVQ):
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos = self.proto_layer.components
plabels = self.proto_layer.component_labels
x, y = train_batch
dis = self(x)
# TODO Vectorized implementation
for xi, yi in zip(x, y):
d = self(xi.view(1, -1))
preds = wtac(d, plabels)
w = d.argmin(1)
if yi == preds:
shift = xi - protos[w]
else:
shift = protos[w] - xi
updated_protos = protos + 0.0
updated_protos[w] = protos[w] + (self.hparams.lr * shift)
self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False)
# Logging
self.log_acc(dis, y)
return None
class LVQ21(NonGradientGLVQ):
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
protos = self.proto_layer.components
plabels = self.proto_layer.component_labels
x, y = train_batch
dis = self(x)
# TODO Vectorized implementation
for xi, yi in zip(x, y):
xi = xi.view(1, -1)
yi = yi.view(1, )
d = self(xi)
preds = wtac(d, plabels)
(dp, wp), (dn, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
shiftp = xi - protos[wp]
shiftn = protos[wn] - xi
updated_protos = protos + 0.0
updated_protos[wp] = protos[wp] + (self.hparams.lr * shiftp)
updated_protos[wn] = protos[wn] + (self.hparams.lr * shiftn)
self.proto_layer.load_state_dict({"_components": updated_protos},
strict=False)
# Logging
self.log_acc(dis, y)
return None
class MedianLVQ(NonGradientGLVQ):
...
class GLVQ1(GLVQ):
"""Learning Vector Quantization 1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
@@ -206,7 +287,7 @@ class LVQ1(GLVQ):
self.optimizer = torch.optim.SGD
class LVQ21(GLVQ):
class GLVQ21(GLVQ):
"""Learning Vector Quantization 2.1."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)