Change optimizer using kwargs
This commit is contained in:
parent
b38acd58a8
commit
eab1ec72c2
@ -3,9 +3,13 @@ import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
|
||||
class AbstractLightningModel(pl.LightningModule):
|
||||
class AbstractPrototypeModel(pl.LightningModule):
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
scheduler = ExponentialLR(optimizer,
|
||||
gamma=0.99,
|
||||
last_epoch=-1,
|
||||
@ -15,9 +19,3 @@ class AbstractLightningModel(pl.LightningModule):
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
|
||||
|
||||
class AbstractPrototypeModel(AbstractLightningModel):
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
@ -9,8 +9,6 @@ from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
@ -19,14 +17,15 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
self.hparams.setdefault("optimizer", torch.optim.Adam)
|
||||
self.hparams.setdefault("transfer_function", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
self.proto_layer = LabeledComponents(
|
||||
labels=(self.hparams.nclasses, self.hparams.prototypes_per_class),
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=self.hparams.prototype_initializer)
|
||||
|
||||
self.transfer_function = get_activation(self.hparams.transfer_function)
|
||||
@ -81,39 +80,19 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
|
||||
class LVQ1(GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq1_loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr)
|
||||
scheduler = ExponentialLR(optimizer,
|
||||
gamma=0.99,
|
||||
last_epoch=-1,
|
||||
verbose=False)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class LVQ21(GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = lvq21_loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr)
|
||||
scheduler = ExponentialLR(optimizer,
|
||||
gamma=0.99,
|
||||
last_epoch=-1,
|
||||
verbose=False)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(GLVQ):
|
||||
@ -152,13 +131,13 @@ class SiameseGLVQ(GLVQ):
|
||||
self.backbone_dependent.load_state_dict(master_state, strict=True)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optim = self.hparams.optimizer
|
||||
proto_opt = optim(self.proto_layer.parameters(),
|
||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
if list(self.backbone.parameters()):
|
||||
# only add an optimizer is the backbone has trainable parameters
|
||||
# otherwise, the next line fails
|
||||
bb_opt = optim(self.backbone.parameters(), lr=self.hparams.bb_lr)
|
||||
bb_opt = self.optimizer(self.backbone.parameters(),
|
||||
lr=self.hparams.bb_lr)
|
||||
return proto_opt, bb_opt
|
||||
else:
|
||||
return proto_opt
|
||||
|
@ -1,6 +1,7 @@
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.components.initializers import ZerosInitializer
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
|
||||
@ -41,12 +42,14 @@ class NeuralGas(AbstractPrototypeModel):
|
||||
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("input_dim", 2)
|
||||
self.hparams.setdefault("agelimit", 10)
|
||||
self.hparams.setdefault("lm", 1)
|
||||
self.hparams.setdefault("prototype_initializer",
|
||||
cinit.ZerosInitializer(self.hparams.input_dim))
|
||||
ZerosInitializer(self.hparams.input_dim))
|
||||
|
||||
self.proto_layer = Components(
|
||||
self.hparams.num_prototypes,
|
||||
|
Loading…
Reference in New Issue
Block a user