Sort imports in example scripts
This commit is contained in:
parent
7b7bc3693d
commit
e9d2075fed
@ -2,10 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -2,10 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
@ -14,14 +14,10 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
@ -38,7 +34,7 @@ if __name__ == "__main__":
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train), block=False)
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
@ -2,10 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -2,11 +2,12 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -18,9 +19,8 @@ if __name__ == "__main__":
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 3
|
||||
prototypes_per_class = 1
|
||||
|
@ -2,12 +2,13 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -2,11 +2,12 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -19,9 +20,7 @@ if __name__ == "__main__":
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(k=20)
|
||||
|
@ -2,10 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -24,10 +25,11 @@ if __name__ == "__main__":
|
||||
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 2
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 4
|
||||
},
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
proto_lr=0.001,
|
||||
|
@ -1,10 +1,12 @@
|
||||
"""LVQMLN example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
@ -35,9 +37,7 @@ if __name__ == "__main__":
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
|
@ -2,12 +2,13 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -24,9 +25,7 @@ if __name__ == "__main__":
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(num_prototypes=30, lr=0.03)
|
||||
|
@ -1,11 +1,11 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
"""Probabilistic-LVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
@ -14,14 +14,10 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 3
|
||||
@ -29,20 +25,19 @@ if __name__ == "__main__":
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
lr=0.05,
|
||||
variance=1,
|
||||
variance=1.0,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.LikelihoodRatioLVQ(
|
||||
#model = pt.models.probabilistic.RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
#prototype_initializer=pt.components.SSI(train_ds, noise=2),
|
||||
prototype_initializer=pt.components.UniformInitializer(2),
|
||||
# prototype_initializer=pt.components.UniformInitializer(2),
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train), block=False)
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
@ -2,10 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
@ -36,9 +37,7 @@ if __name__ == "__main__":
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
|
Loading…
Reference in New Issue
Block a user