Fix broken state from previous commit
This commit is contained in:
parent
fa7b178028
commit
e5a62bd0fc
@ -17,6 +17,21 @@ class NumpyDataset(TensorDataset):
|
||||
super().__init__(*tensors)
|
||||
|
||||
|
||||
class GLVQIris(GLVQ):
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = argparse.ArgumentParser(parents=[parent_parser],
|
||||
add_help=False)
|
||||
parser.add_argument("--epochs", type=int, default=1)
|
||||
parser.add_argument("--lr", type=float, default=1e-1)
|
||||
parser.add_argument("--batch_size", type=int, default=150)
|
||||
parser.add_argument("--prototypes_per_class", type=int, default=3)
|
||||
parser.add_argument("--prototype_initializer",
|
||||
type=str,
|
||||
default="stratified_mean")
|
||||
return parser
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
@ -62,30 +77,9 @@ class VisualizationCallback(pl.Callback):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Hyperparameters
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--epochs",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Epochs to train.")
|
||||
parser.add_argument("--lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="Learning rate.")
|
||||
parser.add_argument("--batch_size",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Batch size.")
|
||||
parser.add_argument("--gpus",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of GPUs to use.")
|
||||
parser.add_argument("--ppc",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Prototypes-Per-Class.")
|
||||
args = parser.parse_args()
|
||||
# For best-practices when using `argparse` with `pytorch_lightning`, see
|
||||
# https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
@ -95,32 +89,35 @@ if __name__ == "__main__":
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototype_distribution=[2, 7, 5],
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[x_train, y_train],
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
# Add model specific args
|
||||
parser = GLVQIris.add_model_specific_args(parser)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
|
||||
# Automatically add trainer-specific-args like `--gpus`, `--num_nodes` etc.
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=hparams.epochs,
|
||||
auto_lr_find=
|
||||
True, # finds learning rate automatically with `trainer.tune(model)`
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
parser,
|
||||
callbacks=[
|
||||
vis, # comment this line out to disable the visualization
|
||||
],
|
||||
)
|
||||
trainer.tune(model)
|
||||
# trainer.tune(model)
|
||||
|
||||
# Initialize the model
|
||||
args = parser.parse_args()
|
||||
model = GLVQIris(
|
||||
args,
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
data=[x_train, y_train],
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
@ -130,6 +127,6 @@ if __name__ == "__main__":
|
||||
trainer.save_checkpoint(ckpt)
|
||||
|
||||
# Load the checkpoint
|
||||
new_model = GLVQ.load_from_checkpoint(checkpoint_path=ckpt)
|
||||
new_model = GLVQIris.load_from_checkpoint(checkpoint_path=ckpt)
|
||||
|
||||
print(new_model)
|
||||
|
@ -1,3 +1,5 @@
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
@ -10,10 +12,21 @@ from prototorch.modules.prototypes import Prototypes1D
|
||||
|
||||
class GLVQ(pl.LightningModule):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
def __init__(self, hparams):
|
||||
def __init__(self, hparams, input_dim, nclasses, **kwargs):
|
||||
super().__init__()
|
||||
self.lr = hparams.lr
|
||||
self.proto_layer = Prototypes1D(**kwargs)
|
||||
self.hparams = hparams
|
||||
# self.save_hyperparameters(
|
||||
# "lr",
|
||||
# "prototypes_per_class",
|
||||
# "prototype_initializer",
|
||||
# )
|
||||
self.proto_layer = Prototypes1D(
|
||||
input_dim=input_dim,
|
||||
nclasses=nclasses,
|
||||
prototypes_per_class=hparams.prototypes_per_class,
|
||||
prototype_initializer=hparams.prototype_initializer,
|
||||
**kwargs)
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
|
||||
@property
|
||||
@ -24,15 +37,28 @@ class GLVQ(pl.LightningModule):
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.prototype_labels.detach().numpy()
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
|
||||
return optimizer
|
||||
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = argparse.ArgumentParser(parents=[parent_parser],
|
||||
add_help=False)
|
||||
parser.add_argument("--epochs", type=int, default=1)
|
||||
parser.add_argument("--lr", type=float, default=1e-2)
|
||||
parser.add_argument("--batch_size", type=int, default=32)
|
||||
parser.add_argument("--prototypes_per_class", type=int, default=1)
|
||||
parser.add_argument("--prototype_initializer",
|
||||
type=str,
|
||||
default="zeros")
|
||||
return parser
|
||||
|
||||
def forward(self, x):
|
||||
protos = self.proto_layer.prototypes
|
||||
dis = euclidean_distance(x, protos)
|
||||
return dis
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
|
||||
return optimizer
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
x, y = train_batch
|
||||
x = x.view(x.size(0), -1)
|
||||
@ -44,8 +70,13 @@ class GLVQ(pl.LightningModule):
|
||||
with torch.no_grad():
|
||||
preds = wtac(dis, plabels)
|
||||
# self.train_acc.update(preds.int(), y.int())
|
||||
self.train_acc(preds.int(), y.int()) # FloatTensors are assumed to be class probabilities
|
||||
self.log("Training Accuracy", self.train_acc, on_step=False, on_epoch=True)
|
||||
self.train_acc(
|
||||
preds.int(),
|
||||
y.int()) # FloatTensors are assumed to be class probabilities
|
||||
self.log("Training Accuracy",
|
||||
self.train_acc,
|
||||
on_step=False,
|
||||
on_epoch=True)
|
||||
return loss
|
||||
|
||||
# def training_epoch_end(self, outs):
|
||||
|
Loading…
Reference in New Issue
Block a user