Improvement of model __repr__
This commit is contained in:
parent
0ac4ced85d
commit
db064b5af1
@ -13,28 +13,44 @@ from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
|||||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||||
|
|
||||||
|
|
||||||
|
class FunctionLayer(torch.nn.Module):
|
||||||
|
def __init__(self, distance_fn):
|
||||||
|
super().__init__()
|
||||||
|
self.fn = distance_fn
|
||||||
|
self.name = distance_fn.__name__
|
||||||
|
|
||||||
|
def forward(self, *args, **kwargs):
|
||||||
|
return self.fn(*args, **kwargs)
|
||||||
|
|
||||||
|
def extra_repr(self):
|
||||||
|
return self.name
|
||||||
|
|
||||||
|
|
||||||
class GLVQ(AbstractPrototypeModel):
|
class GLVQ(AbstractPrototypeModel):
|
||||||
"""Generalized Learning Vector Quantization."""
|
"""Generalized Learning Vector Quantization."""
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.save_hyperparameters(hparams)
|
# Hyperparameters
|
||||||
|
self.save_hyperparameters(hparams) # Default Values
|
||||||
|
|
||||||
self.distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
|
||||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
|
||||||
|
|
||||||
# Default Values
|
|
||||||
self.hparams.setdefault("transfer_fn", "identity")
|
self.hparams.setdefault("transfer_fn", "identity")
|
||||||
self.hparams.setdefault("transfer_beta", 10.0)
|
self.hparams.setdefault("transfer_beta", 10.0)
|
||||||
self.hparams.setdefault("lr", 0.01)
|
self.hparams.setdefault("lr", 0.01)
|
||||||
|
|
||||||
|
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||||
|
tranfer_fn = get_activation(self.hparams.transfer_fn)
|
||||||
|
|
||||||
|
# Layers
|
||||||
self.proto_layer = LabeledComponents(
|
self.proto_layer = LabeledComponents(
|
||||||
distribution=self.hparams.distribution,
|
distribution=self.hparams.distribution,
|
||||||
initializer=self.prototype_initializer(**kwargs))
|
initializer=self.prototype_initializer(**kwargs))
|
||||||
|
|
||||||
self.transfer_fn = get_activation(self.hparams.transfer_fn)
|
self.distance_layer = FunctionLayer(distance_fn)
|
||||||
|
self.transfer_layer = FunctionLayer(tranfer_fn)
|
||||||
|
self.loss = FunctionLayer(glvq_loss)
|
||||||
|
|
||||||
self.loss = glvq_loss
|
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||||
|
|
||||||
def prototype_initializer(self, **kwargs):
|
def prototype_initializer(self, **kwargs):
|
||||||
return kwargs.get("prototype_initializer", None)
|
return kwargs.get("prototype_initializer", None)
|
||||||
@ -49,7 +65,7 @@ class GLVQ(AbstractPrototypeModel):
|
|||||||
|
|
||||||
def _forward(self, x):
|
def _forward(self, x):
|
||||||
protos, _ = self.proto_layer()
|
protos, _ = self.proto_layer()
|
||||||
distances = self.distance_fn(x, protos)
|
distances = self.distance_layer(x, protos)
|
||||||
return distances
|
return distances
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
@ -87,7 +103,7 @@ class GLVQ(AbstractPrototypeModel):
|
|||||||
out = self._forward(x)
|
out = self._forward(x)
|
||||||
plabels = self.proto_layer.component_labels
|
plabels = self.proto_layer.component_labels
|
||||||
mu = self.loss(out, y, prototype_labels=plabels)
|
mu = self.loss(out, y, prototype_labels=plabels)
|
||||||
batch_loss = self.transfer_fn(mu, beta=self.hparams.transfer_beta)
|
batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
|
||||||
loss = batch_loss.sum(dim=0)
|
loss = batch_loss.sum(dim=0)
|
||||||
return out, loss
|
return out, loss
|
||||||
|
|
||||||
@ -121,6 +137,7 @@ class GLVQ(AbstractPrototypeModel):
|
|||||||
|
|
||||||
def increase_prototypes(self, initializer, distribution):
|
def increase_prototypes(self, initializer, distribution):
|
||||||
self.proto_layer.increase_components(initializer, distribution)
|
self.proto_layer.increase_components(initializer, distribution)
|
||||||
|
#self.trainer.accelerated_backend.setup_optimizers(self)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
super_repr = super().__repr__()
|
super_repr = super().__repr__()
|
||||||
|
Loading…
Reference in New Issue
Block a user