refactor(api)!: merge the new api changes into dev
This commit is contained in:
commit
d42693a441
@ -4,7 +4,10 @@ commit = True
|
||||
tag = True
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)
|
||||
serialize = {major}.{minor}.{patch}
|
||||
message = bump: {current_version} → {new_version}
|
||||
|
||||
[bumpversion:file:setup.py]
|
||||
|
||||
[bumpversion:file:./prototorch/models/__init__.py]
|
||||
|
||||
[bumpversion:file:./docs/source/conf.py]
|
||||
|
17
.gitignore
vendored
17
.gitignore
vendored
@ -128,14 +128,19 @@ dmypy.json
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# Datasets
|
||||
datasets/
|
||||
|
||||
# PyTorch-Lightning
|
||||
lightning_logs/
|
||||
|
||||
.vscode/
|
||||
|
||||
# Vim
|
||||
*~
|
||||
*.swp
|
||||
*.swo
|
||||
|
||||
# Pytorch Models or Weights
|
||||
# If necessary make exceptions for single pretrained models
|
||||
*.pt
|
||||
|
||||
# Artifacts created by ProtoTorch Models
|
||||
datasets/
|
||||
lightning_logs/
|
||||
examples/_*.py
|
||||
examples/_*.ipynb
|
||||
|
@ -1,54 +1,53 @@
|
||||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.0.1
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
|
||||
- repo: https://github.com/myint/autoflake
|
||||
rev: v1.4
|
||||
hooks:
|
||||
- id: autoflake
|
||||
- id: autoflake
|
||||
|
||||
- repo: http://github.com/PyCQA/isort
|
||||
rev: 5.8.0
|
||||
hooks:
|
||||
- id: isort
|
||||
- id: isort
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: 'v0.902'
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v0.902
|
||||
hooks:
|
||||
- id: mypy
|
||||
files: prototorch
|
||||
additional_dependencies: [types-pkg_resources]
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: 'v0.31.0' # Use the sha / tag you want to point at
|
||||
hooks:
|
||||
- id: yapf
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.31.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.9.0 # Use the ref you want to point at
|
||||
hooks:
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
- repo: https://github.com/pre-commit/pygrep-hooks
|
||||
rev: v1.9.0
|
||||
hooks:
|
||||
- id: python-use-type-annotations
|
||||
- id: python-no-log-warn
|
||||
- id: python-check-blanket-noqa
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.19.4
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.19.4
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/jorisroovers/gitlint
|
||||
rev: "v0.15.1"
|
||||
hooks:
|
||||
- id: gitlint
|
||||
args: [--contrib=CT1, --ignore=B6, --msg-filename]
|
||||
- repo: https://github.com/si-cim/gitlint
|
||||
rev: v0.15.2-unofficial
|
||||
hooks:
|
||||
- id: gitlint
|
||||
args: [--contrib=CT1, --ignore=B6, --msg-filename]
|
||||
|
34
README.md
34
README.md
@ -20,23 +20,6 @@ pip install prototorch_models
|
||||
of** [ProtoTorch](https://github.com/si-cim/prototorch). The plugin should then
|
||||
be available for use in your Python environment as `prototorch.models`.
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## Available models
|
||||
|
||||
### LVQ Family
|
||||
@ -103,6 +86,23 @@ To assist in the development process, you may also find it useful to install
|
||||
please avoid installing Tensorflow in this environment. It is known to cause
|
||||
problems with PyTorch-Lightning.**
|
||||
|
||||
## Contribution
|
||||
|
||||
This repository contains definition for [git hooks](https://githooks.com).
|
||||
[Pre-commit](https://pre-commit.com) is automatically installed as development
|
||||
dependency with prototorch or you can install it manually with `pip install
|
||||
pre-commit`.
|
||||
|
||||
Please install the hooks by running:
|
||||
```bash
|
||||
pre-commit install
|
||||
pre-commit install --hook-type commit-msg
|
||||
```
|
||||
before creating the first commit.
|
||||
|
||||
The commit will fail if the commit message does not follow the specification
|
||||
provided [here](https://www.conventionalcommits.org/en/v1.0.0/#specification).
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I update the plugin?
|
||||
|
@ -23,7 +23,7 @@ author = "Jensun Ravichandran"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
#
|
||||
release = "0.4.4"
|
||||
release = "0.1.8"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -24,14 +23,18 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[2, 2, 2],
|
||||
proto_lr=0.1,
|
||||
distribution=[1, 0, 3],
|
||||
margin=0.1,
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CBC(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
|
||||
components_initializer=pt.initializers.SSCI(train_ds, noise=0.01),
|
||||
reasonings_iniitializer=pt.initializers.
|
||||
PurePositiveReasoningsInitializer(),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
|
@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -37,7 +36,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.CELVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Ones(2, scale=3),
|
||||
prototypes_initializer=pt.initializers.FVCI(2, 3.0),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
|
@ -2,12 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -24,7 +23,7 @@ if __name__ == "__main__":
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 4
|
||||
"per_class": 4
|
||||
},
|
||||
lr=0.01,
|
||||
)
|
||||
@ -33,7 +32,7 @@ if __name__ == "__main__":
|
||||
model = pt.models.GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -26,7 +25,6 @@ if __name__ == "__main__":
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
transfer_function="swish_beta",
|
||||
transfer_beta=10.0,
|
||||
# lr=0.1,
|
||||
proto_lr=0.1,
|
||||
bb_lr=0.1,
|
||||
input_dim=2,
|
||||
@ -37,7 +35,7 @@ if __name__ == "__main__":
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
@ -47,12 +45,12 @@ if __name__ == "__main__":
|
||||
block=False,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.02,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=2,
|
||||
frequency=5,
|
||||
replace=True,
|
||||
initializer=pt.components.SSI(train_ds, noise=1e-2),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
|
||||
verbose=True,
|
||||
)
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
@ -68,7 +66,7 @@ if __name__ == "__main__":
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
# es,
|
||||
# es, # FIXME
|
||||
pruning,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
|
@ -1,59 +0,0 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=4,
|
||||
latent_dim=3,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"prototypes_per_class": 2
|
||||
},
|
||||
proto_lr=0.0005,
|
||||
bb_lr=0.0005,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
omega_initializer=pt.components.PCA(train_ds.data)
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
#model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGMLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -30,7 +29,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.GrowingNeuralGas(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Zeros(2),
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
|
@ -2,25 +2,11 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
def hex_to_rgb(hex_values):
|
||||
for v in hex_values:
|
||||
v = v.lstrip('#')
|
||||
lv = len(v)
|
||||
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
|
||||
yield c
|
||||
|
||||
|
||||
def rgb_to_hex(rgb_values):
|
||||
for v in rgb_values:
|
||||
c = "%02x%02x%02x" % tuple(v)
|
||||
yield c
|
||||
from prototorch.utils.colors import hex_to_rgb
|
||||
|
||||
|
||||
class Vis2DColorSOM(pl.Callback):
|
||||
@ -93,7 +79,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.KohonenSOM(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.Random(3),
|
||||
prototypes_initializer=pt.initializers.RNCI(3),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
|
@ -2,23 +2,22 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
batch_size=256,
|
||||
@ -32,8 +31,10 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.LGMLVQ(hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
model = pt.models.LGMLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
@ -3,11 +3,10 @@
|
||||
import argparse
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
def plot_matrix(matrix):
|
||||
title = "Lambda matrix"
|
||||
@ -40,20 +39,19 @@ if __name__ == "__main__":
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 2,
|
||||
"prototypes_per_class": 1
|
||||
"per_class": 1,
|
||||
},
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
proto_lr=0.0001,
|
||||
bb_lr=0.0001,
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGMLVQ(
|
||||
hparams,
|
||||
# optimizer=torch.optim.SGD,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Summary
|
||||
|
@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
@ -41,7 +40,7 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 2],
|
||||
distribution=[3, 4, 5],
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
)
|
||||
@ -52,7 +51,10 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.LVQMLN(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
|
||||
prototypes_initializer=pt.initializers.SSCI(
|
||||
train_ds,
|
||||
transform=backbone,
|
||||
),
|
||||
backbone=backbone,
|
||||
)
|
||||
|
||||
@ -67,11 +69,21 @@ if __name__ == "__main__":
|
||||
resolution=500,
|
||||
axis_off=True,
|
||||
)
|
||||
pruning = pt.models.PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=20,
|
||||
prune_quota_per_epoch=2,
|
||||
frequency=10,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@ -2,11 +2,9 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision.transforms import Lambda
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
@ -28,19 +26,17 @@ if __name__ == "__main__":
|
||||
distribution=[2, 2, 3],
|
||||
proto_lr=0.05,
|
||||
lambd=0.1,
|
||||
variance=1.0,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.PLVQ(
|
||||
model = pt.models.RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
# prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.2),
|
||||
# prototype_initializer=pt.components.Zeros(2),
|
||||
# prototype_initializer=pt.components.Ones(2, scale=2.0),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
@ -50,7 +46,7 @@ if __name__ == "__main__":
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds)
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
|
@ -2,11 +2,10 @@
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
import prototorch as pt
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
@ -52,7 +51,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGLVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
84
examples/warm_starting.py
Normal file
84
examples/warm_starting.py
Normal file
@ -0,0 +1,84 @@
|
||||
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare the data
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Initialize the gng
|
||||
gng = pt.models.GrowingNeuralGas(
|
||||
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer for GNG
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=200,
|
||||
callbacks=[es],
|
||||
weights_summary=None,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(gng, train_loader)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[],
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Warm-start prototypes
|
||||
knn = pt.models.KNN(dict(k=1), data=train_ds)
|
||||
prototypes = gng.prototypes
|
||||
plabels = knn.predict(prototypes)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.LCI(prototypes),
|
||||
labels_initializer=pt.initializers.LLI(plabels),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
weights_summary="full",
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -4,8 +4,19 @@ from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
||||
from .cbc import CBC, ImageCBC
|
||||
from .glvq import (GLVQ, GLVQ1, GLVQ21, GMLVQ, GRLVQ, LGMLVQ, LVQMLN,
|
||||
ImageGLVQ, ImageGMLVQ, SiameseGLVQ, SiameseGMLVQ)
|
||||
from .glvq import (
|
||||
GLVQ,
|
||||
GLVQ1,
|
||||
GLVQ21,
|
||||
GMLVQ,
|
||||
GRLVQ,
|
||||
LGMLVQ,
|
||||
LVQMLN,
|
||||
ImageGLVQ,
|
||||
ImageGMLVQ,
|
||||
SiameseGLVQ,
|
||||
SiameseGMLVQ,
|
||||
)
|
||||
from .knn import KNN
|
||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
||||
from .probabilistic import CELVQ, PLVQ, RSLVQ, SLVQ
|
||||
|
@ -5,9 +5,13 @@ from typing import Final, final
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.components import Components, LabeledComponents
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules import WTAC, LambdaLayer
|
||||
|
||||
from ..core.competitions import WTAC
|
||||
from ..core.components import Components, LabeledComponents
|
||||
from ..core.distances import euclidean_distance
|
||||
from ..core.initializers import LabelsInitializer
|
||||
from ..core.pooling import stratified_min_pooling
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchMixin(object):
|
||||
@ -85,13 +89,11 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
if prototypes_initializer is not None:
|
||||
self.proto_layer = Components(
|
||||
self.hparams.num_prototypes,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
initializer=prototypes_initializer,
|
||||
)
|
||||
|
||||
def compute_distances(self, x):
|
||||
@ -109,23 +111,24 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
initialized_prototypes = kwargs.get("initialized_prototypes", None)
|
||||
if prototype_initializer is not None or initialized_prototypes is not None:
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
labels_initializer = kwargs.get("labels_initializer",
|
||||
LabelsInitializer())
|
||||
if prototypes_initializer is not None:
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=prototype_initializer,
|
||||
initialized_components=initialized_prototypes,
|
||||
components_initializer=prototypes_initializer,
|
||||
labels_initializer=labels_initializer,
|
||||
)
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
return self.proto_layer.labels.detach().cpu()
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return len(self.proto_layer.distribution)
|
||||
return self.proto_layer.num_classes
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
@ -134,15 +137,14 @@ class SupervisedPrototypeModel(PrototypeModel):
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
y_pred = self.predict_from_distances(distances)
|
||||
# TODO
|
||||
y_pred = torch.eye(self.num_classes, device=self.device)[
|
||||
y_pred.long()] # depends on labels {0,...,num_classes}
|
||||
plabels = self.proto_layer.labels
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = torch.nn.functional.softmin(winning)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
plabels = self.proto_layer.component_labels
|
||||
plabels = self.proto_layer.labels
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
|
@ -4,8 +4,9 @@ import logging
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
|
||||
from ..core.components import Components
|
||||
from ..core.initializers import LiteralCompInitializer
|
||||
from .extras import ConnectionTopology
|
||||
|
||||
|
||||
@ -16,7 +17,7 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
prune_quota_per_epoch=-1,
|
||||
frequency=1,
|
||||
replace=False,
|
||||
initializer=None,
|
||||
prototypes_initializer=None,
|
||||
verbose=False):
|
||||
self.threshold = threshold # minimum win ratio
|
||||
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
||||
@ -24,7 +25,7 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
self.frequency = frequency
|
||||
self.replace = replace
|
||||
self.verbose = verbose
|
||||
self.initializer = initializer
|
||||
self.prototypes_initializer = prototypes_initializer
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
@ -55,8 +56,9 @@ class PruneLoserPrototypes(pl.Callback):
|
||||
if self.verbose:
|
||||
print(f"Re-adding pruned prototypes...")
|
||||
print(f"{distribution=}")
|
||||
pl_module.add_prototypes(distribution=distribution,
|
||||
initializer=self.initializer)
|
||||
pl_module.add_prototypes(
|
||||
distribution=distribution,
|
||||
components_initializer=self.prototypes_initializer)
|
||||
new_num_protos = pl_module.num_prototypes
|
||||
if self.verbose:
|
||||
print(f"`num_prototypes` changed from {cur_num_protos} "
|
||||
@ -116,7 +118,8 @@ class GNGCallback(pl.Callback):
|
||||
|
||||
# Add component
|
||||
pl_module.proto_layer.add_components(
|
||||
initialized_components=new_component.unsqueeze(0))
|
||||
None,
|
||||
initializer=LiteralCompInitializer(new_component.unsqueeze(0)))
|
||||
|
||||
# Adjust Topology
|
||||
topology.add_prototype()
|
||||
|
@ -1,49 +1,54 @@
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
from ..core.competitions import CBCC
|
||||
from ..core.components import ReasoningComponents
|
||||
from ..core.initializers import RandomReasoningsInitializer
|
||||
from ..core.losses import MarginLoss
|
||||
from ..core.similarities import euclidean_similarity
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import ImagePrototypesMixin
|
||||
from .extras import (CosineSimilarity, MarginLoss, ReasoningLayer,
|
||||
euclidean_similarity, rescaled_cosine_similarity,
|
||||
shift_activation)
|
||||
from .glvq import SiameseGLVQ
|
||||
|
||||
|
||||
class CBC(SiameseGLVQ):
|
||||
"""Classification-By-Components."""
|
||||
def __init__(self, hparams, margin=0.1, **kwargs):
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.margin = margin
|
||||
self.similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
num_components = self.components.shape[0]
|
||||
self.reasoning_layer = ReasoningLayer(num_components=num_components,
|
||||
num_classes=self.num_classes)
|
||||
self.component_layer = self.proto_layer
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
return self.prototypes
|
||||
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
components_initializer = kwargs.get("components_initializer", None)
|
||||
reasonings_initializer = kwargs.get("reasonings_initializer",
|
||||
RandomReasoningsInitializer())
|
||||
self.components_layer = ReasoningComponents(
|
||||
self.hparams.distribution,
|
||||
components_initializer=components_initializer,
|
||||
reasonings_initializer=reasonings_initializer,
|
||||
)
|
||||
self.similarity_layer = LambdaLayer(similarity_fn)
|
||||
self.competition_layer = CBCC()
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
return self.reasoning_layer.reasonings.cpu()
|
||||
# Namespace hook
|
||||
self.proto_layer = self.components_layer
|
||||
|
||||
self.loss = MarginLoss(self.hparams.margin)
|
||||
|
||||
def forward(self, x):
|
||||
components, _ = self.component_layer()
|
||||
components, reasonings = self.components_layer()
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_components = self.backbone(components)
|
||||
self.backbone.requires_grad_(True)
|
||||
detections = self.similarity_fn(latent_x, latent_components)
|
||||
probs = self.reasoning_layer(detections)
|
||||
detections = self.similarity_layer(latent_x, latent_components)
|
||||
probs = self.competition_layer(detections, reasonings)
|
||||
return probs
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
# x = x.view(x.size(0), -1)
|
||||
y_pred = self(x)
|
||||
num_classes = self.reasoning_layer.num_classes
|
||||
num_classes = self.num_classes
|
||||
y_true = torch.nn.functional.one_hot(y.long(), num_classes=num_classes)
|
||||
loss = MarginLoss(self.margin)(y_pred, y_true).mean(dim=0)
|
||||
loss = self.loss(y_pred, y_true).mean(dim=0)
|
||||
return y_pred, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
@ -70,7 +75,3 @@ class ImageCBC(ImagePrototypesMixin, CBC):
|
||||
"""CBC model that constrains the components to the range [0, 1] by
|
||||
clamping after updates.
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
# Namespace hook
|
||||
self.proto_layer = self.component_layer
|
||||
|
@ -5,23 +5,32 @@ Modules not yet available in prototorch go here temporarily.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.similarities import cosine_similarity
|
||||
|
||||
from ..core.similarities import gaussian
|
||||
|
||||
|
||||
def rescaled_cosine_similarity(x, y):
|
||||
"""Cosine Similarity rescaled to [0, 1]."""
|
||||
similarities = cosine_similarity(x, y)
|
||||
return (similarities + 1.0) / 2.0
|
||||
def rank_scaled_gaussian(distances, lambd):
|
||||
order = torch.argsort(distances, dim=1)
|
||||
ranks = torch.argsort(order, dim=1)
|
||||
return torch.exp(-torch.exp(-ranks / lambd) * distances)
|
||||
|
||||
|
||||
def shift_activation(x):
|
||||
return (x + 1.0) / 2.0
|
||||
class GaussianPrior(torch.nn.Module):
|
||||
def __init__(self, variance):
|
||||
super().__init__()
|
||||
self.variance = variance
|
||||
|
||||
def forward(self, distances):
|
||||
return gaussian(distances, self.variance)
|
||||
|
||||
|
||||
def euclidean_similarity(x, y, variance=1.0):
|
||||
d = euclidean_distance(x, y)
|
||||
return torch.exp(-(d * d) / (2 * variance))
|
||||
class RankScaledGaussianPrior(torch.nn.Module):
|
||||
def __init__(self, lambd):
|
||||
super().__init__()
|
||||
self.lambd = lambd
|
||||
|
||||
def forward(self, distances):
|
||||
return rank_scaled_gaussian(distances, self.lambd)
|
||||
|
||||
|
||||
class ConnectionTopology(torch.nn.Module):
|
||||
@ -79,64 +88,3 @@ class ConnectionTopology(torch.nn.Module):
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(agelimit): ({self.agelimit})"
|
||||
|
||||
|
||||
class CosineSimilarity(torch.nn.Module):
|
||||
def __init__(self, activation=shift_activation):
|
||||
super().__init__()
|
||||
self.activation = activation
|
||||
|
||||
def forward(self, x, y):
|
||||
epsilon = torch.finfo(x.dtype).eps
|
||||
normed_x = (x / x.pow(2).sum(dim=tuple(range(
|
||||
1, x.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
normed_y = (y / y.pow(2).sum(dim=tuple(range(
|
||||
1, y.ndim)), keepdim=True).clamp(min=epsilon).sqrt()).flatten(
|
||||
start_dim=1)
|
||||
# normed_x = (x / torch.linalg.norm(x, dim=1))
|
||||
diss = torch.inner(normed_x, normed_y)
|
||||
return self.activation(diss)
|
||||
|
||||
|
||||
class MarginLoss(torch.nn.modules.loss._Loss):
|
||||
def __init__(self,
|
||||
margin=0.3,
|
||||
size_average=None,
|
||||
reduce=None,
|
||||
reduction="mean"):
|
||||
super().__init__(size_average, reduce, reduction)
|
||||
self.margin = margin
|
||||
|
||||
def forward(self, input_, target):
|
||||
dp = torch.sum(target * input_, dim=-1)
|
||||
dm = torch.max(input_ - target, dim=-1).values
|
||||
return torch.nn.functional.relu(dm - dp + self.margin)
|
||||
|
||||
|
||||
class ReasoningLayer(torch.nn.Module):
|
||||
def __init__(self, num_components, num_classes, num_replicas=1):
|
||||
super().__init__()
|
||||
self.num_replicas = num_replicas
|
||||
self.num_classes = num_classes
|
||||
probabilities_init = torch.zeros(2, 1, num_components,
|
||||
self.num_classes)
|
||||
probabilities_init.uniform_(0.4, 0.6)
|
||||
# TODO Use `self.register_parameter("param", Paramater(param))` instead
|
||||
self.reasoning_probabilities = torch.nn.Parameter(probabilities_init)
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
pk = self.reasoning_probabilities[0]
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1]
|
||||
ik = 1 - pk - nk
|
||||
img = torch.cat([pk, nk, ik], dim=0).permute(1, 0, 2)
|
||||
return img.unsqueeze(1)
|
||||
|
||||
def forward(self, detections):
|
||||
pk = self.reasoning_probabilities[0].clamp(0, 1)
|
||||
nk = (1 - pk) * self.reasoning_probabilities[1].clamp(0, 1)
|
||||
numerator = (detections @ (pk - nk)) + nk.sum(1)
|
||||
probs = numerator / (pk + nk).sum(1)
|
||||
probs = probs.squeeze(0)
|
||||
return probs
|
||||
|
@ -1,16 +1,14 @@
|
||||
"""Models based on the GLVQ framework."""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (lomega_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.components import LinearMapping
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from ..core.competitions import wtac
|
||||
from ..core.distances import lomega_distance, omega_distance, squared_euclidean_distance
|
||||
from ..core.initializers import EyeTransformInitializer
|
||||
from ..core.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from ..nn.activations import get_activation
|
||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||
from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel
|
||||
|
||||
|
||||
@ -30,9 +28,6 @@ class GLVQ(SupervisedPrototypeModel):
|
||||
# Loss
|
||||
self.loss = LossLayer(glvq_loss)
|
||||
|
||||
# Prototype metrics
|
||||
self.initialize_prototype_win_ratios()
|
||||
|
||||
def initialize_prototype_win_ratios(self):
|
||||
self.register_buffer(
|
||||
"prototype_win_ratios",
|
||||
@ -59,7 +54,7 @@ class GLVQ(SupervisedPrototypeModel):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
plabels = self.proto_layer.labels
|
||||
mu = self.loss(out, y, prototype_labels=plabels)
|
||||
batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
@ -135,7 +130,7 @@ class SiameseGLVQ(GLVQ):
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = get_flat(x, protos)
|
||||
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_protos = self.backbone(protos)
|
||||
@ -240,17 +235,13 @@ class GMLVQ(GLVQ):
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
omega_initializer = kwargs.get("omega_initializer", None)
|
||||
initialized_omega = kwargs.get("initialized_omega", None)
|
||||
if omega_initializer is not None or initialized_omega is not None:
|
||||
self.omega_layer = LinearMapping(
|
||||
mapping_shape=(self.hparams.input_dim, self.hparams.latent_dim),
|
||||
initializer=omega_initializer,
|
||||
initialized_linearmapping=initialized_omega,
|
||||
)
|
||||
|
||||
self.register_parameter("_omega", Parameter(self.omega_layer.mapping))
|
||||
self.backbone = LambdaLayer(lambda x: x @ self._omega, name = "omega matrix")
|
||||
omega_initializer = kwargs.get("omega_initializer",
|
||||
EyeTransformInitializer())
|
||||
omega = omega_initializer.generate(self.hparams.input_dim,
|
||||
self.hparams.latent_dim)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
self.backbone = LambdaLayer(lambda x: x @ self._omega,
|
||||
name="omega matrix")
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
@ -264,24 +255,6 @@ class GMLVQ(GLVQ):
|
||||
def extra_repr(self):
|
||||
return f"(omega): (shape: {tuple(self._omega.shape)})"
|
||||
|
||||
def predict_latent(self, x, map_protos=True):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
if map_protos:
|
||||
protos = self.backbone(protos)
|
||||
d = squared_euclidean_distance(x, protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
|
||||
|
||||
class LGMLVQ(GMLVQ):
|
||||
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
||||
|
@ -2,9 +2,10 @@
|
||||
|
||||
import warnings
|
||||
|
||||
from prototorch.components import LabeledComponents
|
||||
from prototorch.modules import KNNC
|
||||
|
||||
from ..core.competitions import KNNC
|
||||
from ..core.components import LabeledComponents
|
||||
from ..core.initializers import LiteralCompInitializer, LiteralLabelsInitializer
|
||||
from ..utils.utils import parse_data_arg
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
|
||||
|
||||
@ -19,9 +20,13 @@ class KNN(SupervisedPrototypeModel):
|
||||
data = kwargs.get("data", None)
|
||||
if data is None:
|
||||
raise ValueError("KNN requires data, but was not provided!")
|
||||
data, targets = parse_data_arg(data)
|
||||
|
||||
# Layers
|
||||
self.proto_layer = LabeledComponents(initialized_components=data)
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=[],
|
||||
components_initializer=LiteralCompInitializer(data),
|
||||
labels_initializer=LiteralLabelsInitializer(targets))
|
||||
self.competition_layer = KNNC(k=self.hparams.k)
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
|
@ -1,7 +1,6 @@
|
||||
"""LVQ models that are optimized using non-gradient methods."""
|
||||
|
||||
from prototorch.functions.losses import _get_dp_dm
|
||||
|
||||
from ..core.losses import _get_dp_dm
|
||||
from .abstract import NonGradientMixin
|
||||
from .glvq import GLVQ
|
||||
|
||||
@ -10,7 +9,7 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
plabels = self.proto_layer.labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
@ -29,6 +28,8 @@ class LVQ1(NonGradientMixin, GLVQ):
|
||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||
strict=False)
|
||||
|
||||
print(f"{dis=}")
|
||||
print(f"{y=}")
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
@ -39,7 +40,7 @@ class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos = self.proto_layer.components
|
||||
plabels = self.proto_layer.component_labels
|
||||
plabels = self.proto_layer.labels
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
|
@ -1,13 +1,11 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.losses import nllr_loss, rslvq_loss
|
||||
from prototorch.functions.pooling import (stratified_min_pooling,
|
||||
stratified_sum_pooling)
|
||||
from prototorch.functions.transforms import (GaussianPrior,
|
||||
RankScaledGaussianPrior)
|
||||
from prototorch.modules import LambdaLayer, LossLayer
|
||||
|
||||
from ..core.losses import nllr_loss, rslvq_loss
|
||||
from ..core.pooling import stratified_min_pooling, stratified_sum_pooling
|
||||
from ..nn.wrappers import LambdaLayer, LossLayer
|
||||
from .extras import GaussianPrior, RankScaledGaussianPrior
|
||||
from .glvq import GLVQ, SiameseGMLVQ
|
||||
|
||||
|
||||
@ -22,7 +20,7 @@ class CELVQ(GLVQ):
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x) # [None, num_protos]
|
||||
plabels = self.proto_layer.component_labels
|
||||
plabels = self.proto_layer.labels
|
||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||
probs = -1.0 * winning
|
||||
batch_loss = self.loss(probs, y.long())
|
||||
@ -56,7 +54,7 @@ class ProbabilisticLVQ(GLVQ):
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
plabels = self.proto_layer.labels
|
||||
batch_loss = self.loss(out, y, plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return loss
|
||||
@ -89,11 +87,10 @@ class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
self.hparams.lambd)
|
||||
self.loss = torch.nn.KLDivLoss()
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
y_dist = torch.nn.functional.one_hot(
|
||||
y.long(), num_classes=self.num_classes).float()
|
||||
batch_loss = self.loss(out, y_dist)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
return loss
|
||||
# FIXME
|
||||
# def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
# x, y = batch
|
||||
# y_pred = self(x)
|
||||
# batch_loss = self.loss(y_pred, y)
|
||||
# loss = batch_loss.sum(dim=0)
|
||||
# return loss
|
||||
|
@ -2,11 +2,11 @@
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import squared_euclidean_distance
|
||||
from prototorch.modules import LambdaLayer
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
|
||||
from ..core.competitions import wtac
|
||||
from ..core.distances import squared_euclidean_distance
|
||||
from ..core.losses import NeuralGasEnergy
|
||||
from ..nn.wrappers import LambdaLayer
|
||||
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
||||
from .callbacks import GNGCallback
|
||||
from .extras import ConnectionTopology
|
||||
|
@ -7,6 +7,8 @@ import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
from ..utils.utils import mesh2d
|
||||
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
def __init__(self,
|
||||
@ -73,23 +75,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
ax.axis("off")
|
||||
return ax
|
||||
|
||||
def get_mesh_input(self, x):
|
||||
x_shift = self.border * np.ptp(x[:, 0])
|
||||
y_shift = self.border * np.ptp(x[:, 1])
|
||||
x_min, x_max = x[:, 0].min() - x_shift, x[:, 0].max() + x_shift
|
||||
y_min, y_max = x[:, 1].min() - y_shift, x[:, 1].max() + y_shift
|
||||
xx, yy = np.meshgrid(np.linspace(x_min, x_max, self.resolution),
|
||||
np.linspace(y_min, y_max, self.resolution))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
return mesh_input, xx, yy
|
||||
|
||||
def perform_pca_2D(self, data):
|
||||
(_, eigVal, eigVec) = torch.pca_lowrank(data, q=2)
|
||||
return data @ eigVec
|
||||
|
||||
def plot_data(self, ax, x, y, pca=False):
|
||||
if pca:
|
||||
x = self.perform_pca_2D(x)
|
||||
def plot_data(self, ax, x, y):
|
||||
ax.scatter(
|
||||
x[:, 0],
|
||||
x[:, 1],
|
||||
@ -100,9 +86,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
s=30,
|
||||
)
|
||||
|
||||
def plot_protos(self, ax, protos, plabels, pca=False):
|
||||
if pca:
|
||||
protos = self.perform_pca_2D(protos)
|
||||
def plot_protos(self, ax, protos, plabels):
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
@ -146,7 +130,7 @@ class VisGLVQ2D(Vis2DAbstract):
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
@ -181,9 +165,9 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
else:
|
||||
mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
mesh_input, xx, yy = mesh2d(x_train, self.border, self.resolution)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict_latent(mesh_input,
|
||||
@ -194,50 +178,6 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
def __init__(self, *args, map_protos=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.map_protos = map_protos
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
with torch.no_grad():
|
||||
x_train = pl_module.backbone(torch.Tensor(x_train).to(device))
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.map_protos:
|
||||
with torch.no_grad():
|
||||
protos = pl_module.backbone(torch.Tensor(protos).to(device))
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
if x_train.shape[1] > 2:
|
||||
self.plot_data(ax, x_train, y_train, pca=True)
|
||||
else:
|
||||
self.plot_data(ax, x_train, y_train, pca=False)
|
||||
if self.show_protos:
|
||||
if protos.shape[1] > 2:
|
||||
self.plot_protos(ax, protos, plabels, pca=True)
|
||||
else:
|
||||
self.plot_protos(ax, protos, plabels, pca=False)
|
||||
### something to work on: meshgrid with pca
|
||||
# x = np.vstack((x_train, protos))
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
#else:
|
||||
# mesh_input, xx, yy = self.get_mesh_input(x_train)
|
||||
#_components = pl_module.proto_layer._components
|
||||
#mesh_input = torch.Tensor(mesh_input).type_as(_components)
|
||||
#y_pred = pl_module.predict_latent(mesh_input,
|
||||
# map_protos=self.map_protos)
|
||||
#y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
#ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
@ -250,8 +190,8 @@ class VisCBC2D(Vis2DAbstract):
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
self.plot_protos(ax, protos, "w")
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
_components = pl_module.component_layer._components
|
||||
mesh_input, xx, yy = mesh2d(x, self.border, self.resolution)
|
||||
_components = pl_module.components_layer._components
|
||||
y_pred = pl_module.predict(
|
||||
torch.Tensor(mesh_input).type_as(_components))
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
|
Loading…
Reference in New Issue
Block a user