Add examples/dynamic_components.py

This commit is contained in:
Jensun Ravichandran 2021-05-31 00:32:27 +02:00
parent b7edee02c3
commit cd73f6c427
3 changed files with 59 additions and 1 deletions

View File

@ -0,0 +1,56 @@
"""Dynamically update the number of prototypes in GLVQ."""
import argparse
import pytorch_lightning as pl
import torch
import prototorch as pt
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
# Hyperparameters
hparams = dict(
distribution=[1, 1, 1],
transfer_function="sigmoid_beta",
transfer_beta=10.0,
lr=0.01,
)
# Initialize the model
model = pt.models.GLVQ(
hparams,
prototype_initializer=pt.components.SMI(train_ds),
)
for _ in range(5):
# Callbacks
vis = pt.models.VisGLVQ2D(train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=20,
callbacks=[vis],
terminate_on_nan=True,
weights_summary=None,
)
# Training loop
trainer.fit(model, train_loader)
# Increase prototypes
model.increase_prototypes(
pt.components.SMI(train_ds),
distribution=[1, 1, 1],
)

View File

@ -1,6 +1,5 @@
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from prototorch.functions.competitions import wtac
from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import ExponentialLR

View File

@ -120,6 +120,9 @@ class GLVQ(AbstractPrototypeModel):
# def predict_step(self, batch, batch_idx, dataloader_idx=None): # def predict_step(self, batch, batch_idx, dataloader_idx=None):
# pass # pass
def increase_prototypes(self, initializer, distribution):
self.proto_layer.increase_components(initializer, distribution)
def __repr__(self): def __repr__(self):
super_repr = super().__repr__() super_repr = super().__repr__()
return f"{super_repr}" return f"{super_repr}"