Stop passing component initializers as hparams
Pass the component initializer as an hparam slows down the script very much. The API has now been changed to pass it as a kwarg to the models instead. The example scripts have also been updated to reflect the new changes. Also, ImageGMLVQ and an example script `gmlvq_mnist.py` that uses it have also been added.
This commit is contained in:
parent
1498c4bde5
commit
ca39aa00d5
@ -51,7 +51,7 @@ To assist in the development process, you may also find it useful to install
|
||||
|
||||
## Available models
|
||||
|
||||
- K-Nearest Neighbors (KNN)
|
||||
- k-Nearest Neighbors (KNN)
|
||||
- Learning Vector Quantization 1 (LVQ1)
|
||||
- Generalized Learning Vector Quantization (GLVQ)
|
||||
- Generalized Relevance Learning Vector Quantization (GRLVQ)
|
||||
@ -68,6 +68,7 @@ To assist in the development process, you may also find it useful to install
|
||||
|
||||
## Planned models
|
||||
|
||||
- Median-LVQ
|
||||
- Local-Matrix GMLVQ
|
||||
- Generalized Tangent Learning Vector Quantization (GTLVQ)
|
||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||
|
@ -21,12 +21,13 @@ if __name__ == "__main__":
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(hparams, optimizer=torch.optim.Adam)
|
||||
model = pt.models.GLVQ(hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
|
||||
|
@ -29,14 +29,15 @@ if __name__ == "__main__":
|
||||
prototypes_per_class = 20
|
||||
hparams = dict(
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-1),
|
||||
transfer_function="sigmoid_beta",
|
||||
transfer_beta=10.0,
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(hparams)
|
||||
model = pt.models.GLVQ(hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds,
|
||||
noise=1e-1))
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(train_ds, show_last_only=True, block=True)
|
||||
|
@ -21,12 +21,12 @@ if __name__ == "__main__":
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
input_dim=x_train.shape[1],
|
||||
latent_dim=x_train.shape[1],
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(hparams)
|
||||
model = pt.models.GMLVQ(hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100)
|
||||
|
68
examples/gmlvq_mnist.py
Normal file
68
examples/gmlvq_mnist.py
Normal file
@ -0,0 +1,68 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
train_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
test_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
test_loader = torch.utils.data.DataLoader(test_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
nclasses = 10
|
||||
prototypes_per_class = 2
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
latent_dim=28 * 28,
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.ImageGMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisImgComp(data=train_ds,
|
||||
nrow=5,
|
||||
show=False,
|
||||
tensorboard=True)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=50,
|
||||
callbacks=[vis],
|
||||
# overfit_batches=1,
|
||||
# fast_dev_run=3,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -23,12 +23,12 @@ if __name__ == "__main__":
|
||||
distribution=(nclasses, prototypes_per_class),
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.001,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(hparams)
|
||||
model = pt.models.GMLVQ(hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
|
||||
|
@ -37,7 +37,6 @@ if __name__ == "__main__":
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 3],
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
@ -45,6 +44,7 @@ if __name__ == "__main__":
|
||||
# Initialize the model
|
||||
model = pt.models.SiameseGLVQ(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
backbone_module=Backbone,
|
||||
)
|
||||
|
||||
|
@ -2,7 +2,7 @@ from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .cbc import CBC
|
||||
from .glvq import (GLVQ, GMLVQ, GRLVQ, LVQ1, LVQ21, LVQMLN, ImageGLVQ,
|
||||
SiameseGLVQ)
|
||||
ImageGMLVQ, SiameseGLVQ)
|
||||
from .knn import KNN
|
||||
from .neural_gas import NeuralGas
|
||||
from .vis import *
|
||||
|
@ -8,6 +8,11 @@ class AbstractPrototypeModel(pl.LightningModule):
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
"""Only an alias for the prototypes."""
|
||||
return self.prototypes
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
scheduler = ExponentialLR(optimizer,
|
||||
@ -19,3 +24,8 @@ class AbstractPrototypeModel(pl.LightningModule):
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
|
||||
|
||||
class PrototypeImageModel(pl.LightningModule):
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
@ -5,9 +5,18 @@ from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.modules.mappings import OmegaMapping
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
|
||||
|
||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
@ -18,6 +27,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
@ -26,7 +36,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=self.hparams.prototype_initializer)
|
||||
initializer=prototype_initializer)
|
||||
|
||||
self.transfer_function = get_activation(self.hparams.transfer_function)
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
@ -44,7 +54,6 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
x, y = train_batch
|
||||
x = x.view(x.size(0), -1) # flatten
|
||||
dis = self(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
mu = self.loss(dis, y, prototype_labels=plabels)
|
||||
@ -95,15 +104,14 @@ class LVQ21(GLVQ):
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(GLVQ):
|
||||
class ImageGLVQ(GLVQ, PrototypeImageModel):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
pass
|
||||
|
||||
|
||||
class SiameseGLVQ(GLVQ):
|
||||
@ -235,6 +243,7 @@ class GMLVQ(GLVQ):
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = get_flat(x, protos)
|
||||
latent_x = self.omega_layer(x)
|
||||
latent_protos = self.omega_layer(protos)
|
||||
dis = squared_euclidean_distance(latent_x, latent_protos)
|
||||
@ -256,6 +265,16 @@ class GMLVQ(GLVQ):
|
||||
return y_pred.numpy()
|
||||
|
||||
|
||||
class ImageGMLVQ(GMLVQ, PrototypeImageModel):
|
||||
"""GMLVQ for training on image data.
|
||||
|
||||
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class LVQMLN(GLVQ):
|
||||
"""Learning Vector Quantization Multi-Layer Network.
|
||||
|
||||
|
@ -3,6 +3,7 @@ import os
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.offsetbox import AnchoredText
|
||||
from prototorch.utils.celluloid import Camera
|
||||
@ -270,6 +271,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
border=1,
|
||||
resolution=50,
|
||||
show_protos=True,
|
||||
show=True,
|
||||
tensorboard=False,
|
||||
show_last_only=False,
|
||||
pause_time=0.1,
|
||||
@ -290,6 +292,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
self.border = border
|
||||
self.resolution = resolution
|
||||
self.show_protos = show_protos
|
||||
self.show = show
|
||||
self.tensorboard = tensorboard
|
||||
self.show_last_only = show_last_only
|
||||
self.pause_time = pause_time
|
||||
@ -352,6 +355,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
def log_and_display(self, trainer, pl_module):
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if self.show:
|
||||
if not self.block:
|
||||
plt.pause(self.pause_time)
|
||||
else:
|
||||
@ -458,3 +462,50 @@ class VisNG2D(Vis2DAbstract):
|
||||
)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisImgComp(Vis2DAbstract):
|
||||
def __init__(self,
|
||||
*args,
|
||||
random_data=0,
|
||||
dataformats="CHW",
|
||||
nrow=2,
|
||||
**kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.random_data = random_data
|
||||
self.dataformats = dataformats
|
||||
self.nrow = nrow
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
if self.show:
|
||||
components = pl_module.components
|
||||
grid = torchvision.utils.make_grid(components, nrow=self.nrow)
|
||||
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
def add_to_tensorboard(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
|
||||
components = pl_module.components
|
||||
grid = torchvision.utils.make_grid(components, nrow=self.nrow)
|
||||
tb.add_image(
|
||||
tag="Components",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats=self.dataformats,
|
||||
)
|
||||
|
||||
if self.random_data:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.random_data,
|
||||
replace=False)
|
||||
data_img = self.x_train[ind]
|
||||
grid = torchvision.utils.make_grid(data_img, nrow=self.nrow)
|
||||
tb.add_image(tag="Data",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats=self.dataformats)
|
||||
|
Loading…
Reference in New Issue
Block a user