Stop passing component initializers as hparams
Pass the component initializer as an hparam slows down the script very much. The API has now been changed to pass it as a kwarg to the models instead. The example scripts have also been updated to reflect the new changes. Also, ImageGMLVQ and an example script `gmlvq_mnist.py` that uses it have also been added.
This commit is contained in:
@@ -2,7 +2,7 @@ from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .cbc import CBC
|
||||
from .glvq import (GLVQ, GMLVQ, GRLVQ, LVQ1, LVQ21, LVQMLN, ImageGLVQ,
|
||||
SiameseGLVQ)
|
||||
ImageGMLVQ, SiameseGLVQ)
|
||||
from .knn import KNN
|
||||
from .neural_gas import NeuralGas
|
||||
from .vis import *
|
||||
|
@@ -8,6 +8,11 @@ class AbstractPrototypeModel(pl.LightningModule):
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
"""Only an alias for the prototypes."""
|
||||
return self.prototypes
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
||||
scheduler = ExponentialLR(optimizer,
|
||||
@@ -19,3 +24,8 @@ class AbstractPrototypeModel(pl.LightningModule):
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
|
||||
|
||||
class PrototypeImageModel(pl.LightningModule):
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
@@ -5,9 +5,18 @@ from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.helper import get_flat
|
||||
from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss
|
||||
from prototorch.modules.mappings import OmegaMapping
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
|
||||
|
||||
from .abstract import AbstractPrototypeModel, PrototypeImageModel
|
||||
|
||||
|
||||
class GLVQ(AbstractPrototypeModel):
|
||||
@@ -18,6 +27,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
prototype_initializer = kwargs.get("prototype_initializer", None)
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
@@ -26,7 +36,7 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=self.hparams.distribution,
|
||||
initializer=self.hparams.prototype_initializer)
|
||||
initializer=prototype_initializer)
|
||||
|
||||
self.transfer_function = get_activation(self.hparams.transfer_function)
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
@@ -44,7 +54,6 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
x, y = train_batch
|
||||
x = x.view(x.size(0), -1) # flatten
|
||||
dis = self(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
mu = self.loss(dis, y, prototype_labels=plabels)
|
||||
@@ -95,15 +104,14 @@ class LVQ21(GLVQ):
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(GLVQ):
|
||||
class ImageGLVQ(GLVQ, PrototypeImageModel):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
pass
|
||||
|
||||
|
||||
class SiameseGLVQ(GLVQ):
|
||||
@@ -235,6 +243,7 @@ class GMLVQ(GLVQ):
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = get_flat(x, protos)
|
||||
latent_x = self.omega_layer(x)
|
||||
latent_protos = self.omega_layer(protos)
|
||||
dis = squared_euclidean_distance(latent_x, latent_protos)
|
||||
@@ -256,6 +265,16 @@ class GMLVQ(GLVQ):
|
||||
return y_pred.numpy()
|
||||
|
||||
|
||||
class ImageGMLVQ(GMLVQ, PrototypeImageModel):
|
||||
"""GMLVQ for training on image data.
|
||||
|
||||
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class LVQMLN(GLVQ):
|
||||
"""Learning Vector Quantization Multi-Layer Network.
|
||||
|
||||
|
@@ -3,6 +3,7 @@ import os
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib.offsetbox import AnchoredText
|
||||
from prototorch.utils.celluloid import Camera
|
||||
@@ -270,6 +271,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
border=1,
|
||||
resolution=50,
|
||||
show_protos=True,
|
||||
show=True,
|
||||
tensorboard=False,
|
||||
show_last_only=False,
|
||||
pause_time=0.1,
|
||||
@@ -290,6 +292,7 @@ class Vis2DAbstract(pl.Callback):
|
||||
self.border = border
|
||||
self.resolution = resolution
|
||||
self.show_protos = show_protos
|
||||
self.show = show
|
||||
self.tensorboard = tensorboard
|
||||
self.show_last_only = show_last_only
|
||||
self.pause_time = pause_time
|
||||
@@ -352,10 +355,11 @@ class Vis2DAbstract(pl.Callback):
|
||||
def log_and_display(self, trainer, pl_module):
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if not self.block:
|
||||
plt.pause(self.pause_time)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
if self.show:
|
||||
if not self.block:
|
||||
plt.pause(self.pause_time)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
|
||||
def on_train_end(self, trainer, pl_module):
|
||||
plt.show()
|
||||
@@ -458,3 +462,50 @@ class VisNG2D(Vis2DAbstract):
|
||||
)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisImgComp(Vis2DAbstract):
|
||||
def __init__(self,
|
||||
*args,
|
||||
random_data=0,
|
||||
dataformats="CHW",
|
||||
nrow=2,
|
||||
**kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.random_data = random_data
|
||||
self.dataformats = dataformats
|
||||
self.nrow = nrow
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if not self.precheck(trainer):
|
||||
return True
|
||||
|
||||
if self.show:
|
||||
components = pl_module.components
|
||||
grid = torchvision.utils.make_grid(components, nrow=self.nrow)
|
||||
plt.imshow(grid.permute((1, 2, 0)).cpu(), cmap=self.cmap)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
def add_to_tensorboard(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
|
||||
components = pl_module.components
|
||||
grid = torchvision.utils.make_grid(components, nrow=self.nrow)
|
||||
tb.add_image(
|
||||
tag="Components",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats=self.dataformats,
|
||||
)
|
||||
|
||||
if self.random_data:
|
||||
ind = np.random.choice(len(self.x_train),
|
||||
size=self.random_data,
|
||||
replace=False)
|
||||
data_img = self.x_train[ind]
|
||||
grid = torchvision.utils.make_grid(data_img, nrow=self.nrow)
|
||||
tb.add_image(tag="Data",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats=self.dataformats)
|
||||
|
Reference in New Issue
Block a user