[WIP] Add SOM
This commit is contained in:
parent
b031382072
commit
c7b5c88776
@ -26,8 +26,8 @@ be available for use in your Python environment as `prototorch.models`.
|
|||||||
- Generalized Learning Vector Quantization (GLVQ)
|
- Generalized Learning Vector Quantization (GLVQ)
|
||||||
- Generalized Relevance Learning Vector Quantization (GRLVQ)
|
- Generalized Relevance Learning Vector Quantization (GRLVQ)
|
||||||
- Generalized Matrix Learning Vector Quantization (GMLVQ)
|
- Generalized Matrix Learning Vector Quantization (GMLVQ)
|
||||||
- Localized and Generalized Matrix Learning Vector Quantization (LGMLVQ)
|
|
||||||
- Limited-Rank Matrix Learning Vector Quantization (LiRaMLVQ)
|
- Limited-Rank Matrix Learning Vector Quantization (LiRaMLVQ)
|
||||||
|
- Localized and Generalized Matrix Learning Vector Quantization (LGMLVQ)
|
||||||
- Learning Vector Quantization Multi-Layer Network (LVQMLN)
|
- Learning Vector Quantization Multi-Layer Network (LVQMLN)
|
||||||
- Siamese GLVQ
|
- Siamese GLVQ
|
||||||
- Cross-Entropy Learning Vector Quantization (CELVQ)
|
- Cross-Entropy Learning Vector Quantization (CELVQ)
|
||||||
@ -43,6 +43,7 @@ be available for use in your Python environment as `prototorch.models`.
|
|||||||
|
|
||||||
- Classification-By-Components Network (CBC)
|
- Classification-By-Components Network (CBC)
|
||||||
- Learning Vector Quantization 2.1 (LVQ2.1)
|
- Learning Vector Quantization 2.1 (LVQ2.1)
|
||||||
|
- Self-Organizing-Map (SOM)
|
||||||
|
|
||||||
## Planned models
|
## Planned models
|
||||||
|
|
||||||
|
112
examples/ksom_colors.py
Normal file
112
examples/ksom_colors.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
"""Kohonen Self Organizing Map."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import prototorch as pt
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
def hex_to_rgb(hex_values):
|
||||||
|
for v in hex_values:
|
||||||
|
v = v.lstrip('#')
|
||||||
|
lv = len(v)
|
||||||
|
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
|
||||||
|
yield c
|
||||||
|
|
||||||
|
|
||||||
|
def rgb_to_hex(rgb_values):
|
||||||
|
for v in rgb_values:
|
||||||
|
c = "%02x%02x%02x" % tuple(v)
|
||||||
|
yield c
|
||||||
|
|
||||||
|
|
||||||
|
class Vis2DColorSOM(pl.Callback):
|
||||||
|
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.title = title
|
||||||
|
self.fig = plt.figure(self.title)
|
||||||
|
self.data = data
|
||||||
|
self.pause_time = pause_time
|
||||||
|
|
||||||
|
def on_epoch_end(self, trainer, pl_module):
|
||||||
|
ax = self.fig.gca()
|
||||||
|
ax.cla()
|
||||||
|
ax.set_title(self.title)
|
||||||
|
h, w = pl_module._grid.shape[:2]
|
||||||
|
protos = pl_module.prototypes.view(h, w, 3)
|
||||||
|
ax.imshow(protos)
|
||||||
|
|
||||||
|
# Overlay color names
|
||||||
|
d = pl_module.compute_distances(self.data)
|
||||||
|
wp = pl_module.predict_from_distances(d)
|
||||||
|
for i, iloc in enumerate(wp):
|
||||||
|
plt.text(iloc[1],
|
||||||
|
iloc[0],
|
||||||
|
cnames[i],
|
||||||
|
ha="center",
|
||||||
|
va="center",
|
||||||
|
bbox=dict(facecolor="white", alpha=0.5, lw=0))
|
||||||
|
|
||||||
|
plt.pause(self.pause_time)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Command-line arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = pl.Trainer.add_argparse_args(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Reproducibility
|
||||||
|
pl.utilities.seed.seed_everything(seed=42)
|
||||||
|
|
||||||
|
# Prepare the data
|
||||||
|
hex_colors = [
|
||||||
|
"#000000", "#0000ff", "#00007f", "#1f86ff", "#5466aa", "#997fff",
|
||||||
|
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
|
||||||
|
"#545454", "#7f7f7f", "#a8a8a8"
|
||||||
|
]
|
||||||
|
cnames = [
|
||||||
|
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
|
||||||
|
"red", "cyan", "violet", "yellow", "white", "darkgrey", "mediumgrey",
|
||||||
|
"lightgrey"
|
||||||
|
]
|
||||||
|
colors = list(hex_to_rgb(hex_colors))
|
||||||
|
data = torch.Tensor(colors) / 255.0
|
||||||
|
train_ds = torch.utils.data.TensorDataset(data)
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
hparams = dict(
|
||||||
|
shape=(18, 32),
|
||||||
|
alpha=1.0,
|
||||||
|
sigma=3,
|
||||||
|
lr=0.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the model
|
||||||
|
model = pt.models.KohonenSOM(
|
||||||
|
hparams,
|
||||||
|
prototype_initializer=pt.components.Random(3),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Compute intermediate input and output sizes
|
||||||
|
model.example_input_array = torch.zeros(4, 3)
|
||||||
|
|
||||||
|
# Model summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# Callbacks
|
||||||
|
vis = Vis2DColorSOM(data=data)
|
||||||
|
|
||||||
|
# Setup trainer
|
||||||
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
|
args,
|
||||||
|
max_epochs=300,
|
||||||
|
callbacks=[vis],
|
||||||
|
weights_summary="full",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training loop
|
||||||
|
trainer.fit(model, train_loader)
|
@ -20,7 +20,7 @@ from .glvq import (
|
|||||||
from .knn import KNN
|
from .knn import KNN
|
||||||
from .lvq import LVQ1, LVQ21, MedianLVQ
|
from .lvq import LVQ1, LVQ21, MedianLVQ
|
||||||
from .probabilistic import CELVQ, RSLVQ, LikelihoodRatioLVQ
|
from .probabilistic import CELVQ, RSLVQ, LikelihoodRatioLVQ
|
||||||
from .unsupervised import GrowingNeuralGas, NeuralGas
|
from .unsupervised import GrowingNeuralGas, HeskesSOM, KohonenSOM, NeuralGas
|
||||||
from .vis import *
|
from .vis import *
|
||||||
|
|
||||||
__version__ = "0.1.7"
|
__version__ = "0.1.7"
|
||||||
|
@ -1,25 +1,76 @@
|
|||||||
"""Unsupervised prototype learning algorithms."""
|
"""Unsupervised prototype learning algorithms."""
|
||||||
|
|
||||||
import logging
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
import prototorch as pt
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
import torch
|
import torch
|
||||||
import torchmetrics
|
from prototorch.functions.competitions import wtac
|
||||||
from prototorch.components import Components, LabeledComponents
|
from prototorch.functions.distances import squared_euclidean_distance
|
||||||
from prototorch.components.initializers import ZerosInitializer
|
from prototorch.functions.helper import get_flat
|
||||||
from prototorch.functions.competitions import knnc
|
|
||||||
from prototorch.functions.distances import euclidean_distance
|
|
||||||
from prototorch.modules import LambdaLayer
|
from prototorch.modules import LambdaLayer
|
||||||
from prototorch.modules.losses import NeuralGasEnergy
|
from prototorch.modules.losses import NeuralGasEnergy
|
||||||
from pytorch_lightning.callbacks import Callback
|
|
||||||
|
|
||||||
from .abstract import UnsupervisedPrototypeModel
|
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
||||||
from .callbacks import GNGCallback
|
from .callbacks import GNGCallback
|
||||||
from .extras import ConnectionTopology
|
from .extras import ConnectionTopology
|
||||||
|
|
||||||
|
|
||||||
|
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||||
|
"""Kohonen Self-Organizing-Map.
|
||||||
|
|
||||||
|
TODO Allow non-2D grids
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(self, hparams, **kwargs):
|
||||||
|
h, w = hparams.get("shape")
|
||||||
|
# Ignore `num_prototypes`
|
||||||
|
hparams["num_prototypes"] = h * w
|
||||||
|
distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
|
||||||
|
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
self.save_hyperparameters(hparams)
|
||||||
|
|
||||||
|
# Default hparams
|
||||||
|
self.hparams.setdefault("alpha", 0.3)
|
||||||
|
self.hparams.setdefault("sigma", max(h, w) / 2.0)
|
||||||
|
|
||||||
|
# Additional parameters
|
||||||
|
x, y = torch.arange(h), torch.arange(w)
|
||||||
|
grid = torch.stack(torch.meshgrid(x, y), dim=-1)
|
||||||
|
self.register_buffer("_grid", grid)
|
||||||
|
|
||||||
|
def predict_from_distances(self, distances):
|
||||||
|
grid = self._grid.view(-1, 2)
|
||||||
|
wp = wtac(distances, grid)
|
||||||
|
return wp
|
||||||
|
|
||||||
|
def training_step(self, train_batch, batch_idx):
|
||||||
|
# x = train_batch
|
||||||
|
# TODO Check if the batch has labels
|
||||||
|
x = train_batch[0]
|
||||||
|
d = self.compute_distances(x)
|
||||||
|
wp = self.predict_from_distances(d)
|
||||||
|
grid = self._grid.view(-1, 2)
|
||||||
|
gd = squared_euclidean_distance(wp, grid)
|
||||||
|
nh = torch.exp(-gd / self.hparams.sigma**2)
|
||||||
|
protos = self.proto_layer.components
|
||||||
|
diff = x.unsqueeze(dim=1) - protos
|
||||||
|
delta = self.hparams.lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
||||||
|
updated_protos = protos + delta.sum(dim=0)
|
||||||
|
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||||
|
strict=False)
|
||||||
|
|
||||||
|
def extra_repr(self):
|
||||||
|
return f"(grid): (shape: {tuple(self._grid.shape)})"
|
||||||
|
|
||||||
|
|
||||||
|
class HeskesSOM(UnsupervisedPrototypeModel):
|
||||||
|
def __init__(self, hparams, **kwargs):
|
||||||
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
|
def training_step(self, train_batch, batch_idx):
|
||||||
|
# TODO Implement me!
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
|
||||||
class NeuralGas(UnsupervisedPrototypeModel):
|
class NeuralGas(UnsupervisedPrototypeModel):
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
Loading…
Reference in New Issue
Block a user