[WIP] Add SOM

This commit is contained in:
Jensun Ravichandran
2021-06-07 18:44:15 +02:00
parent b031382072
commit c7b5c88776
4 changed files with 178 additions and 14 deletions

112
examples/ksom_colors.py Normal file
View File

@@ -0,0 +1,112 @@
"""Kohonen Self Organizing Map."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
def hex_to_rgb(hex_values):
for v in hex_values:
v = v.lstrip('#')
lv = len(v)
c = [int(v[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)]
yield c
def rgb_to_hex(rgb_values):
for v in rgb_values:
c = "%02x%02x%02x" % tuple(v)
yield c
class Vis2DColorSOM(pl.Callback):
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
super().__init__()
self.title = title
self.fig = plt.figure(self.title)
self.data = data
self.pause_time = pause_time
def on_epoch_end(self, trainer, pl_module):
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
h, w = pl_module._grid.shape[:2]
protos = pl_module.prototypes.view(h, w, 3)
ax.imshow(protos)
# Overlay color names
d = pl_module.compute_distances(self.data)
wp = pl_module.predict_from_distances(d)
for i, iloc in enumerate(wp):
plt.text(iloc[1],
iloc[0],
cnames[i],
ha="center",
va="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0))
plt.pause(self.pause_time)
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Prepare the data
hex_colors = [
"#000000", "#0000ff", "#00007f", "#1f86ff", "#5466aa", "#997fff",
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
"#545454", "#7f7f7f", "#a8a8a8"
]
cnames = [
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
"red", "cyan", "violet", "yellow", "white", "darkgrey", "mediumgrey",
"lightgrey"
]
colors = list(hex_to_rgb(hex_colors))
data = torch.Tensor(colors) / 255.0
train_ds = torch.utils.data.TensorDataset(data)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
# Hyperparameters
hparams = dict(
shape=(18, 32),
alpha=1.0,
sigma=3,
lr=0.1,
)
# Initialize the model
model = pt.models.KohonenSOM(
hparams,
prototype_initializer=pt.components.Random(3),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 3)
# Model summary
print(model)
# Callbacks
vis = Vis2DColorSOM(data=data)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=300,
callbacks=[vis],
weights_summary="full",
)
# Training loop
trainer.fit(model, train_loader)