Automatic Formating.
This commit is contained in:
@@ -4,26 +4,24 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.cbc import CBC, rescaled_cosine_similarity, euclidean_similarity
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from sklearn.datasets import make_circles
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class NumpyDataset(TensorDataset):
|
||||
def __init__(self, *arrays):
|
||||
# tensors = [torch.from_numpy(arr) for arr in arrays]
|
||||
tensors = [torch.Tensor(arr) for arr in arrays]
|
||||
super().__init__(*tensors)
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisPointProtos
|
||||
from prototorch.models.cbc import CBC, euclidean_similarity
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
def __init__(
|
||||
self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
@@ -38,20 +36,22 @@ class VisualizationCallback(pl.Callback):
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
color = 'k'
|
||||
color = "k"
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50)
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
@@ -95,7 +95,7 @@ if __name__ == "__main__":
|
||||
similarity=euclidean_similarity,
|
||||
)
|
||||
|
||||
#model = GLVQ(hparams, data=[x_train, y_train])
|
||||
model = GLVQ(hparams, data=[x_train, y_train])
|
||||
|
||||
# Fix the component locations
|
||||
# model.proto_layer.requires_grad_(False)
|
||||
@@ -107,13 +107,21 @@ if __name__ == "__main__":
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train, prototype_model=False)
|
||||
dvis = VisPointProtos(
|
||||
data=(x_train, y_train),
|
||||
save=True,
|
||||
snap=False,
|
||||
voronoi=True,
|
||||
resolution=50,
|
||||
pause_time=0.1,
|
||||
make_gif=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=500,
|
||||
max_epochs=10,
|
||||
callbacks=[
|
||||
vis,
|
||||
dvis,
|
||||
],
|
||||
)
|
||||
|
||||
|
@@ -4,16 +4,11 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.cbc import CBC
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class NumpyDataset(TensorDataset):
|
||||
def __init__(self, *arrays):
|
||||
# tensors = [torch.from_numpy(arr) for arr in arrays]
|
||||
tensors = [torch.Tensor(arr) for arr in arrays]
|
||||
super().__init__(*tensors)
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
@@ -47,7 +42,8 @@ class VisualizationCallback(pl.Callback):
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50)
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
@@ -73,11 +69,13 @@ if __name__ == "__main__":
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_initializer="stratified_mean",
|
||||
lr=0.01)
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_initializer="stratified_mean",
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = CBC(hparams, data=[x_train, y_train])
|
||||
|
@@ -7,12 +7,12 @@ import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.cbc import ImageCBC, euclidean_similarity, rescaled_cosine_similarity
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
from prototorch.models.cbc import CBC, ImageCBC, euclidean_similarity
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
||||
@@ -89,8 +89,8 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(mnist_train, batch_size=1024)
|
||||
test_loader = DataLoader(mnist_test, batch_size=1024)
|
||||
train_loader = DataLoader(mnist_train, batch_size=32)
|
||||
test_loader = DataLoader(mnist_test, batch_size=32)
|
||||
|
||||
# Grab the full dataset to warm-start prototypes
|
||||
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
|
||||
@@ -102,12 +102,12 @@ if __name__ == "__main__":
|
||||
nclasses=10,
|
||||
prototypes_per_class=args.ppc,
|
||||
prototype_initializer="randn",
|
||||
lr=1,
|
||||
lr=0.01,
|
||||
similarity=euclidean_similarity,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = ImageCBC(hparams, data=[x, y])
|
||||
model = CBC(hparams, data=[x, y])
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
|
135
examples/cbc_spiral.py
Normal file
135
examples/cbc_spiral.py
Normal file
@@ -0,0 +1,135 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(
|
||||
self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.prototype_model = prototype_model
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if self.prototype_model:
|
||||
protos = pl_module.prototypes
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
color = "k"
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
def make_spirals(n_samples=500, noise=0.3):
|
||||
def get_samples(n, delta_t):
|
||||
points = []
|
||||
for i in range(n):
|
||||
r = i / n_samples * 5
|
||||
t = 1.75 * i / n * 2 * np.pi + delta_t
|
||||
x = r * np.sin(t) + np.random.rand(1) * noise
|
||||
y = r * np.cos(t) + np.random.rand(1) * noise
|
||||
points.append([x, y])
|
||||
return points
|
||||
|
||||
n = n_samples // 2
|
||||
positive = get_samples(n=n, delta_t=0)
|
||||
negative = get_samples(n=n, delta_t=np.pi)
|
||||
x = np.concatenate(
|
||||
[np.array(positive).reshape(n, -1),
|
||||
np.array(negative).reshape(n, -1)],
|
||||
axis=0)
|
||||
y = np.concatenate([np.zeros(n), np.ones(n)])
|
||||
return x, y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = make_spirals(n_samples=1000, noise=0.3)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=2,
|
||||
prototypes_per_class=40,
|
||||
prototype_initializer="stratified_random",
|
||||
lr=0.05,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model_class = CBC
|
||||
model = model_class(hparams, data=[x_train, y_train])
|
||||
|
||||
# Pure-positive reasonings
|
||||
new_reasoning = torch.zeros_like(
|
||||
model.reasoning_layer.reasoning_probabilities)
|
||||
for i, label in enumerate(model.proto_layer.prototype_labels):
|
||||
new_reasoning[0][0][i][int(label)] = 1.0
|
||||
|
||||
model.reasoning_layer.reasoning_probabilities.data = new_reasoning
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train,
|
||||
y_train,
|
||||
prototype_model=hasattr(model, "prototypes"))
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=500,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
142
examples/cbc_spiral_with_GLVQ_start.py
Normal file
142
examples/cbc_spiral_with_GLVQ_start.py
Normal file
@@ -0,0 +1,142 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(
|
||||
self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.prototype_model = prototype_model
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if self.prototype_model:
|
||||
protos = pl_module.prototypes
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
color = "k"
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
def make_spirals(n_samples=500, noise=0.3):
|
||||
def get_samples(n, delta_t):
|
||||
points = []
|
||||
for i in range(n):
|
||||
r = i / n_samples * 5
|
||||
t = 1.75 * i / n * 2 * np.pi + delta_t
|
||||
x = r * np.sin(t) + np.random.rand(1) * noise
|
||||
y = r * np.cos(t) + np.random.rand(1) * noise
|
||||
points.append([x, y])
|
||||
return points
|
||||
|
||||
n = n_samples // 2
|
||||
positive = get_samples(n=n, delta_t=0)
|
||||
negative = get_samples(n=n, delta_t=np.pi)
|
||||
x = np.concatenate(
|
||||
[np.array(positive).reshape(n, -1),
|
||||
np.array(negative).reshape(n, -1)],
|
||||
axis=0)
|
||||
y = np.concatenate([np.zeros(n), np.ones(n)])
|
||||
return x, y
|
||||
|
||||
|
||||
def train(model, x_train, y_train, train_loader, epochs=100):
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train,
|
||||
y_train,
|
||||
prototype_model=hasattr(model, "prototypes"))
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=epochs,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
)
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = make_spirals(n_samples=1000, noise=0.3)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=2,
|
||||
prototypes_per_class=40,
|
||||
prototype_initializer="stratified_random",
|
||||
lr=0.05,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
glvq_model = GLVQ(hparams, data=[x_train, y_train])
|
||||
cbc_model = CBC(hparams, data=[x_train, y_train])
|
||||
|
||||
# Train GLVQ
|
||||
train(glvq_model, x_train, y_train, train_loader, epochs=10)
|
||||
|
||||
# Transfer Prototypes
|
||||
cbc_model.proto_layer.load_state_dict(glvq_model.proto_layer.state_dict())
|
||||
# Pure-positive reasonings
|
||||
new_reasoning = torch.zeros_like(
|
||||
cbc_model.reasoning_layer.reasoning_probabilities)
|
||||
for i, label in enumerate(cbc_model.proto_layer.prototype_labels):
|
||||
new_reasoning[0][0][i][int(label)] = 1.0
|
||||
new_reasoning[1][0][i][1 - int(label)] = 1.0
|
||||
|
||||
cbc_model.reasoning_layer.reasoning_probabilities.data = new_reasoning
|
||||
|
||||
# Train CBC
|
||||
train(cbc_model, x_train, y_train, train_loader, epochs=50)
|
@@ -6,15 +6,11 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class NumpyDataset(TensorDataset):
|
||||
def __init__(self, *arrays):
|
||||
tensors = [torch.from_numpy(arr) for arr in arrays]
|
||||
super().__init__(*tensors)
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class GLVQIris(GLVQ):
|
||||
@@ -56,13 +52,15 @@ class VisualizationCallback(pl.Callback):
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50)
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
@@ -105,8 +103,8 @@ if __name__ == "__main__":
|
||||
parser,
|
||||
max_epochs=10,
|
||||
callbacks=[
|
||||
vis, # comment this line out to disable the visualization
|
||||
],
|
||||
vis,
|
||||
], # comment this line out to disable the visualization
|
||||
)
|
||||
# trainer.tune(model)
|
||||
|
||||
|
@@ -4,15 +4,11 @@ import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class NumpyDataset(TensorDataset):
|
||||
def __init__(self, *arrays):
|
||||
tensors = [torch.from_numpy(arr) for arr in arrays]
|
||||
super().__init__(*tensors)
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
@@ -37,13 +33,15 @@ class VisualizationCallback(pl.Callback):
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50)
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
@@ -69,11 +67,13 @@ if __name__ == "__main__":
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_initializer="stratified_mean",
|
||||
lr=0.1)
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_initializer="stratified_mean",
|
||||
lr=0.1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(hparams, data=[x_train, y_train])
|
||||
|
@@ -11,13 +11,12 @@ import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.functions.initializers import stratified_mean
|
||||
from prototorch.models.glvq import ImageGLVQ
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
from prototorch.models.glvq import ImageGLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
||||
@@ -31,10 +30,12 @@ class VisualizationCallback(pl.Callback):
|
||||
grid = torchvision.utils.make_grid(protos_img, nrow=self.nrow)
|
||||
# grid = grid.permute((1, 2, 0))
|
||||
tb = pl_module.logger.experiment
|
||||
tb.add_image(tag="MNIST Prototypes",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats="CHW")
|
||||
tb.add_image(
|
||||
tag="MNIST Prototypes",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats="CHW",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -91,11 +92,13 @@ if __name__ == "__main__":
|
||||
x = x.view(len(mnist_train), -1)
|
||||
|
||||
# Initialize the model
|
||||
model = ImageGLVQ(input_dim=28 * 28,
|
||||
nclasses=10,
|
||||
prototypes_per_class=args.ppc,
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[x, y])
|
||||
model = ImageGLVQ(
|
||||
input_dim=28 * 28,
|
||||
nclasses=10,
|
||||
prototypes_per_class=args.ppc,
|
||||
prototype_initializer="stratified_mean",
|
||||
data=[x, y],
|
||||
)
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
|
Reference in New Issue
Block a user