chore: minor updates and version updates
This commit is contained in:
parent
bccef8bef0
commit
c00513ae0d
@ -1,10 +1,17 @@
|
|||||||
"""Abstract classes to be inherited by prototorch models."""
|
"""Abstract classes to be inherited by prototorch models."""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
import torchmetrics
|
import torchmetrics
|
||||||
from prototorch.core.competitions import WTAC
|
from prototorch.core.competitions import WTAC
|
||||||
from prototorch.core.components import Components, LabeledComponents
|
from prototorch.core.components import (
|
||||||
|
AbstractComponents,
|
||||||
|
Components,
|
||||||
|
LabeledComponents,
|
||||||
|
)
|
||||||
from prototorch.core.distances import euclidean_distance
|
from prototorch.core.distances import euclidean_distance
|
||||||
from prototorch.core.initializers import (
|
from prototorch.core.initializers import (
|
||||||
LabelsInitializer,
|
LabelsInitializer,
|
||||||
@ -32,7 +39,7 @@ class ProtoTorchBolt(pl.LightningModule):
|
|||||||
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
|
optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
|
||||||
if self.lr_scheduler is not None:
|
if self.lr_scheduler is not None:
|
||||||
scheduler = self.lr_scheduler(optimizer,
|
scheduler = self.lr_scheduler(optimizer,
|
||||||
**self.lr_scheduler_kwargs)
|
**self.lr_scheduler_kwargs)
|
||||||
@ -45,7 +52,10 @@ class ProtoTorchBolt(pl.LightningModule):
|
|||||||
return optimizer
|
return optimizer
|
||||||
|
|
||||||
def reconfigure_optimizers(self):
|
def reconfigure_optimizers(self):
|
||||||
|
if self.trainer:
|
||||||
self.trainer.strategy.setup_optimizers(self.trainer)
|
self.trainer.strategy.setup_optimizers(self.trainer)
|
||||||
|
else:
|
||||||
|
logging.warning("No trainer to reconfigure optimizers!")
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
surep = super().__repr__()
|
surep = super().__repr__()
|
||||||
@ -55,6 +65,7 @@ class ProtoTorchBolt(pl.LightningModule):
|
|||||||
|
|
||||||
|
|
||||||
class PrototypeModel(ProtoTorchBolt):
|
class PrototypeModel(ProtoTorchBolt):
|
||||||
|
proto_layer: AbstractComponents
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
@ -77,16 +88,17 @@ class PrototypeModel(ProtoTorchBolt):
|
|||||||
|
|
||||||
def add_prototypes(self, *args, **kwargs):
|
def add_prototypes(self, *args, **kwargs):
|
||||||
self.proto_layer.add_components(*args, **kwargs)
|
self.proto_layer.add_components(*args, **kwargs)
|
||||||
self.hparams.distribution = self.proto_layer.distribution
|
self.hparams["distribution"] = self.proto_layer.distribution
|
||||||
self.reconfigure_optimizers()
|
self.reconfigure_optimizers()
|
||||||
|
|
||||||
def remove_prototypes(self, indices):
|
def remove_prototypes(self, indices):
|
||||||
self.proto_layer.remove_components(indices)
|
self.proto_layer.remove_components(indices)
|
||||||
self.hparams.distribution = self.proto_layer.distribution
|
self.hparams["distribution"] = self.proto_layer.distribution
|
||||||
self.reconfigure_optimizers()
|
self.reconfigure_optimizers()
|
||||||
|
|
||||||
|
|
||||||
class UnsupervisedPrototypeModel(PrototypeModel):
|
class UnsupervisedPrototypeModel(PrototypeModel):
|
||||||
|
proto_layer: Components
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
@ -95,7 +107,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
|||||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||||
if prototypes_initializer is not None:
|
if prototypes_initializer is not None:
|
||||||
self.proto_layer = Components(
|
self.proto_layer = Components(
|
||||||
self.hparams.num_prototypes,
|
self.hparams["num_prototypes"],
|
||||||
initializer=prototypes_initializer,
|
initializer=prototypes_initializer,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -110,6 +122,7 @@ class UnsupervisedPrototypeModel(PrototypeModel):
|
|||||||
|
|
||||||
|
|
||||||
class SupervisedPrototypeModel(PrototypeModel):
|
class SupervisedPrototypeModel(PrototypeModel):
|
||||||
|
proto_layer: LabeledComponents
|
||||||
|
|
||||||
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
|
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
@ -129,13 +142,13 @@ class SupervisedPrototypeModel(PrototypeModel):
|
|||||||
labels_initializer=labels_initializer,
|
labels_initializer=labels_initializer,
|
||||||
)
|
)
|
||||||
proto_shape = self.proto_layer.components.shape[1:]
|
proto_shape = self.proto_layer.components.shape[1:]
|
||||||
self.hparams.initialized_proto_shape = proto_shape
|
self.hparams["initialized_proto_shape"] = proto_shape
|
||||||
else:
|
else:
|
||||||
# when restoring a checkpointed model
|
# when restoring a checkpointed model
|
||||||
self.proto_layer = LabeledComponents(
|
self.proto_layer = LabeledComponents(
|
||||||
distribution=distribution,
|
distribution=distribution,
|
||||||
components_initializer=ZerosCompInitializer(
|
components_initializer=ZerosCompInitializer(
|
||||||
self.hparams.initialized_proto_shape),
|
self.hparams["initialized_proto_shape"]),
|
||||||
)
|
)
|
||||||
self.competition_layer = WTAC()
|
self.competition_layer = WTAC()
|
||||||
|
|
||||||
@ -156,7 +169,7 @@ class SupervisedPrototypeModel(PrototypeModel):
|
|||||||
distances = self.compute_distances(x)
|
distances = self.compute_distances(x)
|
||||||
_, plabels = self.proto_layer()
|
_, plabels = self.proto_layer()
|
||||||
winning = stratified_min_pooling(distances, plabels)
|
winning = stratified_min_pooling(distances, plabels)
|
||||||
y_pred = torch.nn.functional.softmin(winning, dim=1)
|
y_pred = F.softmin(winning, dim=1)
|
||||||
return y_pred
|
return y_pred
|
||||||
|
|
||||||
def predict_from_distances(self, distances):
|
def predict_from_distances(self, distances):
|
||||||
@ -209,8 +222,10 @@ class NonGradientMixin(ProtoTorchMixin):
|
|||||||
|
|
||||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||||
"""Mixin for models with image prototypes."""
|
"""Mixin for models with image prototypes."""
|
||||||
|
proto_layer: Components
|
||||||
|
components: torch.Tensor
|
||||||
|
|
||||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||||
|
|
||||||
|
@ -1,25 +1,30 @@
|
|||||||
"""Lightning Callbacks."""
|
"""Lightning Callbacks."""
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
|
from typing import TYPE_CHECKING
|
||||||
|
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
from prototorch.core.components import Components
|
|
||||||
from prototorch.core.initializers import LiteralCompInitializer
|
from prototorch.core.initializers import LiteralCompInitializer
|
||||||
|
|
||||||
from .extras import ConnectionTopology
|
from .extras import ConnectionTopology
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from prototorch.models import GLVQ, GrowingNeuralGas
|
||||||
|
|
||||||
|
|
||||||
class PruneLoserPrototypes(pl.Callback):
|
class PruneLoserPrototypes(pl.Callback):
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(
|
||||||
|
self,
|
||||||
threshold=0.01,
|
threshold=0.01,
|
||||||
idle_epochs=10,
|
idle_epochs=10,
|
||||||
prune_quota_per_epoch=-1,
|
prune_quota_per_epoch=-1,
|
||||||
frequency=1,
|
frequency=1,
|
||||||
replace=False,
|
replace=False,
|
||||||
prototypes_initializer=None,
|
prototypes_initializer=None,
|
||||||
verbose=False):
|
verbose=False,
|
||||||
|
):
|
||||||
self.threshold = threshold # minimum win ratio
|
self.threshold = threshold # minimum win ratio
|
||||||
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
||||||
self.prune_quota_per_epoch = prune_quota_per_epoch
|
self.prune_quota_per_epoch = prune_quota_per_epoch
|
||||||
@ -28,7 +33,7 @@ class PruneLoserPrototypes(pl.Callback):
|
|||||||
self.verbose = verbose
|
self.verbose = verbose
|
||||||
self.prototypes_initializer = prototypes_initializer
|
self.prototypes_initializer = prototypes_initializer
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
|
||||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||||
return None
|
return None
|
||||||
if (trainer.current_epoch + 1) % self.frequency:
|
if (trainer.current_epoch + 1) % self.frequency:
|
||||||
@ -43,26 +48,28 @@ class PruneLoserPrototypes(pl.Callback):
|
|||||||
prune_labels = prune_labels[:self.prune_quota_per_epoch]
|
prune_labels = prune_labels[:self.prune_quota_per_epoch]
|
||||||
|
|
||||||
if len(to_prune) > 0:
|
if len(to_prune) > 0:
|
||||||
if self.verbose:
|
logging.debug(f"\nPrototype win ratios: {ratios}")
|
||||||
print(f"\nPrototype win ratios: {ratios}")
|
logging.debug(f"Pruning prototypes at: {to_prune}")
|
||||||
print(f"Pruning prototypes at: {to_prune}")
|
logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
|
||||||
print(f"Corresponding labels are: {prune_labels.tolist()}")
|
|
||||||
cur_num_protos = pl_module.num_prototypes
|
cur_num_protos = pl_module.num_prototypes
|
||||||
pl_module.remove_prototypes(indices=to_prune)
|
pl_module.remove_prototypes(indices=to_prune)
|
||||||
|
|
||||||
if self.replace:
|
if self.replace:
|
||||||
labels, counts = torch.unique(prune_labels,
|
labels, counts = torch.unique(prune_labels,
|
||||||
sorted=True,
|
sorted=True,
|
||||||
return_counts=True)
|
return_counts=True)
|
||||||
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
||||||
if self.verbose:
|
|
||||||
print(f"Re-adding pruned prototypes...")
|
logging.info(f"Re-adding pruned prototypes...")
|
||||||
print(f"distribution={distribution}")
|
logging.debug(f"distribution={distribution}")
|
||||||
|
|
||||||
pl_module.add_prototypes(
|
pl_module.add_prototypes(
|
||||||
distribution=distribution,
|
distribution=distribution,
|
||||||
components_initializer=self.prototypes_initializer)
|
components_initializer=self.prototypes_initializer)
|
||||||
new_num_protos = pl_module.num_prototypes
|
new_num_protos = pl_module.num_prototypes
|
||||||
if self.verbose:
|
|
||||||
print(f"`num_prototypes` changed from {cur_num_protos} "
|
logging.info(f"`num_prototypes` changed from {cur_num_protos} "
|
||||||
f"to {new_num_protos}.")
|
f"to {new_num_protos}.")
|
||||||
return True
|
return True
|
||||||
|
|
||||||
@ -74,11 +81,11 @@ class PrototypeConvergence(pl.Callback):
|
|||||||
self.idle_epochs = idle_epochs # epochs to wait
|
self.idle_epochs = idle_epochs # epochs to wait
|
||||||
self.verbose = verbose
|
self.verbose = verbose
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_train_epoch_end(self, trainer, pl_module):
|
||||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||||
return None
|
return None
|
||||||
if self.verbose:
|
|
||||||
print("Stopping...")
|
logging.info("Stopping...")
|
||||||
# TODO
|
# TODO
|
||||||
return True
|
return True
|
||||||
|
|
||||||
@ -96,12 +103,16 @@ class GNGCallback(pl.Callback):
|
|||||||
self.reduction = reduction
|
self.reduction = reduction
|
||||||
self.freq = freq
|
self.freq = freq
|
||||||
|
|
||||||
def on_epoch_end(self, trainer: pl.Trainer, pl_module):
|
def on_train_epoch_end(
|
||||||
|
self,
|
||||||
|
trainer: pl.Trainer,
|
||||||
|
pl_module: "GrowingNeuralGas",
|
||||||
|
):
|
||||||
if (trainer.current_epoch + 1) % self.freq == 0:
|
if (trainer.current_epoch + 1) % self.freq == 0:
|
||||||
# Get information
|
# Get information
|
||||||
errors = pl_module.errors
|
errors = pl_module.errors
|
||||||
topology: ConnectionTopology = pl_module.topology_layer
|
topology: ConnectionTopology = pl_module.topology_layer
|
||||||
components: Components = pl_module.proto_layer.components
|
components = pl_module.proto_layer.components
|
||||||
|
|
||||||
# Insertion point
|
# Insertion point
|
||||||
worst = torch.argmax(errors)
|
worst = torch.argmax(errors)
|
||||||
@ -121,8 +132,9 @@ class GNGCallback(pl.Callback):
|
|||||||
|
|
||||||
# Add component
|
# Add component
|
||||||
pl_module.proto_layer.add_components(
|
pl_module.proto_layer.add_components(
|
||||||
None,
|
1,
|
||||||
initializer=LiteralCompInitializer(new_component.unsqueeze(0)))
|
initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
|
||||||
|
)
|
||||||
|
|
||||||
# Adjust Topology
|
# Adjust Topology
|
||||||
topology.add_prototype()
|
topology.add_prototype()
|
||||||
|
@ -34,9 +34,9 @@ class GLVQ(SupervisedPrototypeModel):
|
|||||||
|
|
||||||
# Loss
|
# Loss
|
||||||
self.loss = GLVQLoss(
|
self.loss = GLVQLoss(
|
||||||
margin=self.hparams.margin,
|
margin=self.hparams["margin"],
|
||||||
transfer_fn=self.hparams.transfer_fn,
|
transfer_fn=self.hparams["transfer_fn"],
|
||||||
beta=self.hparams.transfer_beta,
|
beta=self.hparams["transfer_beta"],
|
||||||
)
|
)
|
||||||
|
|
||||||
# def on_save_checkpoint(self, checkpoint):
|
# def on_save_checkpoint(self, checkpoint):
|
||||||
@ -48,7 +48,7 @@ class GLVQ(SupervisedPrototypeModel):
|
|||||||
"prototype_win_ratios",
|
"prototype_win_ratios",
|
||||||
torch.zeros(self.num_prototypes, device=self.device))
|
torch.zeros(self.num_prototypes, device=self.device))
|
||||||
|
|
||||||
def on_epoch_start(self):
|
def on_train_epoch_start(self):
|
||||||
self.initialize_prototype_win_ratios()
|
self.initialize_prototype_win_ratios()
|
||||||
|
|
||||||
def log_prototype_win_ratios(self, distances):
|
def log_prototype_win_ratios(self, distances):
|
||||||
@ -125,11 +125,11 @@ class SiameseGLVQ(GLVQ):
|
|||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
proto_opt = self.optimizer(self.proto_layer.parameters(),
|
||||||
lr=self.hparams.proto_lr)
|
lr=self.hparams["proto_lr"])
|
||||||
# Only add a backbone optimizer if backbone has trainable parameters
|
# Only add a backbone optimizer if backbone has trainable parameters
|
||||||
bb_params = list(self.backbone.parameters())
|
bb_params = list(self.backbone.parameters())
|
||||||
if (bb_params):
|
if (bb_params):
|
||||||
bb_opt = self.optimizer(bb_params, lr=self.hparams.bb_lr)
|
bb_opt = self.optimizer(bb_params, lr=self.hparams["bb_lr"])
|
||||||
optimizers = [proto_opt, bb_opt]
|
optimizers = [proto_opt, bb_opt]
|
||||||
else:
|
else:
|
||||||
optimizers = [proto_opt]
|
optimizers = [proto_opt]
|
||||||
@ -199,12 +199,13 @@ class GRLVQ(SiameseGLVQ):
|
|||||||
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
_relevances: torch.Tensor
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
# Additional parameters
|
# Additional parameters
|
||||||
relevances = torch.ones(self.hparams.input_dim, device=self.device)
|
relevances = torch.ones(self.hparams["input_dim"], device=self.device)
|
||||||
self.register_parameter("_relevances", Parameter(relevances))
|
self.register_parameter("_relevances", Parameter(relevances))
|
||||||
|
|
||||||
# Override the backbone
|
# Override the backbone
|
||||||
@ -233,8 +234,8 @@ class SiameseGMLVQ(SiameseGLVQ):
|
|||||||
omega_initializer = kwargs.get("omega_initializer",
|
omega_initializer = kwargs.get("omega_initializer",
|
||||||
EyeLinearTransformInitializer())
|
EyeLinearTransformInitializer())
|
||||||
self.backbone = LinearTransform(
|
self.backbone = LinearTransform(
|
||||||
self.hparams.input_dim,
|
self.hparams["input_dim"],
|
||||||
self.hparams.latent_dim,
|
self.hparams["latent_dim"],
|
||||||
initializer=omega_initializer,
|
initializer=omega_initializer,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -244,7 +245,7 @@ class SiameseGMLVQ(SiameseGLVQ):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def lambda_matrix(self):
|
def lambda_matrix(self):
|
||||||
omega = self.backbone.weight # (input_dim, latent_dim)
|
omega = self.backbone.weights # (input_dim, latent_dim)
|
||||||
lam = omega @ omega.T
|
lam = omega @ omega.T
|
||||||
return lam.detach().cpu()
|
return lam.detach().cpu()
|
||||||
|
|
||||||
@ -257,6 +258,9 @@ class GMLVQ(GLVQ):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
_omega: torch.Tensor
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
||||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||||
@ -264,8 +268,8 @@ class GMLVQ(GLVQ):
|
|||||||
# Additional parameters
|
# Additional parameters
|
||||||
omega_initializer = kwargs.get("omega_initializer",
|
omega_initializer = kwargs.get("omega_initializer",
|
||||||
EyeLinearTransformInitializer())
|
EyeLinearTransformInitializer())
|
||||||
omega = omega_initializer.generate(self.hparams.input_dim,
|
omega = omega_initializer.generate(self.hparams["input_dim"],
|
||||||
self.hparams.latent_dim)
|
self.hparams["latent_dim"])
|
||||||
self.register_parameter("_omega", Parameter(omega))
|
self.register_parameter("_omega", Parameter(omega))
|
||||||
self.backbone = LambdaLayer(lambda x: x @ self._omega,
|
self.backbone = LambdaLayer(lambda x: x @ self._omega,
|
||||||
name="omega matrix")
|
name="omega matrix")
|
||||||
@ -299,8 +303,8 @@ class LGMLVQ(GMLVQ):
|
|||||||
# Re-register `_omega` to override the one from the super class.
|
# Re-register `_omega` to override the one from the super class.
|
||||||
omega = torch.randn(
|
omega = torch.randn(
|
||||||
self.num_prototypes,
|
self.num_prototypes,
|
||||||
self.hparams.input_dim,
|
self.hparams["input_dim"],
|
||||||
self.hparams.latent_dim,
|
self.hparams["latent_dim"],
|
||||||
device=self.device,
|
device=self.device,
|
||||||
)
|
)
|
||||||
self.register_parameter("_omega", Parameter(omega))
|
self.register_parameter("_omega", Parameter(omega))
|
||||||
@ -316,23 +320,27 @@ class GTLVQ(LGMLVQ):
|
|||||||
omega_initializer = kwargs.get("omega_initializer")
|
omega_initializer = kwargs.get("omega_initializer")
|
||||||
|
|
||||||
if omega_initializer is not None:
|
if omega_initializer is not None:
|
||||||
subspace = omega_initializer.generate(self.hparams.input_dim,
|
subspace = omega_initializer.generate(
|
||||||
self.hparams.latent_dim)
|
self.hparams["input_dim"],
|
||||||
omega = torch.repeat_interleave(subspace.unsqueeze(0),
|
self.hparams["latent_dim"],
|
||||||
|
)
|
||||||
|
omega = torch.repeat_interleave(
|
||||||
|
subspace.unsqueeze(0),
|
||||||
self.num_prototypes,
|
self.num_prototypes,
|
||||||
dim=0)
|
dim=0,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
omega = torch.rand(
|
omega = torch.rand(
|
||||||
self.num_prototypes,
|
self.num_prototypes,
|
||||||
self.hparams.input_dim,
|
self.hparams["input_dim"],
|
||||||
self.hparams.latent_dim,
|
self.hparams["latent_dim"],
|
||||||
device=self.device,
|
device=self.device,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Re-register `_omega` to override the one from the super class.
|
# Re-register `_omega` to override the one from the super class.
|
||||||
self.register_parameter("_omega", Parameter(omega))
|
self.register_parameter("_omega", Parameter(omega))
|
||||||
|
|
||||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
self._omega.copy_(orthogonalization(self._omega))
|
self._omega.copy_(orthogonalization(self._omega))
|
||||||
|
|
||||||
@ -389,7 +397,7 @@ class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
@ -37,10 +37,7 @@ class KNN(SupervisedPrototypeModel):
|
|||||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||||
return 1 # skip training step
|
return 1 # skip training step
|
||||||
|
|
||||||
def on_train_batch_start(self,
|
def on_train_batch_start(self, train_batch, batch_idx):
|
||||||
train_batch,
|
|
||||||
batch_idx,
|
|
||||||
dataloader_idx=None):
|
|
||||||
warnings.warn("k-NN has no training, skipping!")
|
warnings.warn("k-NN has no training, skipping!")
|
||||||
return -1
|
return -1
|
||||||
|
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
"""LVQ models that are optimized using non-gradient methods."""
|
"""LVQ models that are optimized using non-gradient methods."""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
|
||||||
from prototorch.core.losses import _get_dp_dm
|
from prototorch.core.losses import _get_dp_dm
|
||||||
from prototorch.nn.activations import get_activation
|
from prototorch.nn.activations import get_activation
|
||||||
from prototorch.nn.wrappers import LambdaLayer
|
from prototorch.nn.wrappers import LambdaLayer
|
||||||
@ -30,8 +32,8 @@ class LVQ1(NonGradientMixin, GLVQ):
|
|||||||
self.proto_layer.load_state_dict({"_components": updated_protos},
|
self.proto_layer.load_state_dict({"_components": updated_protos},
|
||||||
strict=False)
|
strict=False)
|
||||||
|
|
||||||
print(f"dis={dis}")
|
logging.debug(f"dis={dis}")
|
||||||
print(f"y={y}")
|
logging.debug(f"y={y}")
|
||||||
# Logging
|
# Logging
|
||||||
self.log_acc(dis, y, tag="train_acc")
|
self.log_acc(dis, y, tag="train_acc")
|
||||||
|
|
||||||
@ -74,8 +76,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, hparams, verbose=True, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
self.verbose = verbose
|
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
self.transfer_layer = LambdaLayer(
|
self.transfer_layer = LambdaLayer(
|
||||||
@ -116,8 +117,7 @@ class MedianLVQ(NonGradientMixin, GLVQ):
|
|||||||
_protos[i] = xk
|
_protos[i] = xk
|
||||||
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
|
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
|
||||||
if _lower_bound > lower_bound:
|
if _lower_bound > lower_bound:
|
||||||
if self.verbose:
|
logging.debug(f"Updating prototype {i} to data {k}...")
|
||||||
print(f"Updating prototype {i} to data {k}...")
|
|
||||||
self.proto_layer.load_state_dict({"_components": _protos},
|
self.proto_layer.load_state_dict({"_components": _protos},
|
||||||
strict=False)
|
strict=False)
|
||||||
break
|
break
|
||||||
|
@ -37,17 +37,24 @@ class ProbabilisticLVQ(GLVQ):
|
|||||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
|
|
||||||
self.conditional_distribution = None
|
|
||||||
self.rejection_confidence = rejection_confidence
|
self.rejection_confidence = rejection_confidence
|
||||||
|
self._conditional_distribution = None
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
distances = self.compute_distances(x)
|
distances = self.compute_distances(x)
|
||||||
|
|
||||||
conditional = self.conditional_distribution(distances)
|
conditional = self.conditional_distribution(distances)
|
||||||
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
|
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
|
||||||
device=self.device)
|
device=self.device)
|
||||||
posterior = conditional * prior
|
posterior = conditional * prior
|
||||||
|
|
||||||
plabels = self.proto_layer._labels
|
plabels = self.proto_layer._labels
|
||||||
y_pred = stratified_sum_pooling(posterior, plabels)
|
if isinstance(plabels, torch.LongTensor) or isinstance(
|
||||||
|
plabels, torch.cuda.LongTensor): # type: ignore
|
||||||
|
y_pred = stratified_sum_pooling(posterior, plabels) # type: ignore
|
||||||
|
else:
|
||||||
|
raise ValueError("Labels must be LongTensor.")
|
||||||
|
|
||||||
return y_pred
|
return y_pred
|
||||||
|
|
||||||
def predict(self, x):
|
def predict(self, x):
|
||||||
@ -64,6 +71,12 @@ class ProbabilisticLVQ(GLVQ):
|
|||||||
loss = batch_loss.sum()
|
loss = batch_loss.sum()
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
def conditional_distribution(self, distances):
|
||||||
|
"""Conditional distribution of distances."""
|
||||||
|
if self._conditional_distribution is None:
|
||||||
|
raise ValueError("Conditional distribution is not set.")
|
||||||
|
return self._conditional_distribution(distances)
|
||||||
|
|
||||||
|
|
||||||
class SLVQ(ProbabilisticLVQ):
|
class SLVQ(ProbabilisticLVQ):
|
||||||
"""Soft Learning Vector Quantization."""
|
"""Soft Learning Vector Quantization."""
|
||||||
@ -75,7 +88,7 @@ class SLVQ(ProbabilisticLVQ):
|
|||||||
self.hparams.setdefault("variance", 1.0)
|
self.hparams.setdefault("variance", 1.0)
|
||||||
variance = self.hparams.get("variance")
|
variance = self.hparams.get("variance")
|
||||||
|
|
||||||
self.conditional_distribution = GaussianPrior(variance)
|
self._conditional_distribution = GaussianPrior(variance)
|
||||||
self.loss = LossLayer(nllr_loss)
|
self.loss = LossLayer(nllr_loss)
|
||||||
|
|
||||||
|
|
||||||
@ -89,7 +102,7 @@ class RSLVQ(ProbabilisticLVQ):
|
|||||||
self.hparams.setdefault("variance", 1.0)
|
self.hparams.setdefault("variance", 1.0)
|
||||||
variance = self.hparams.get("variance")
|
variance = self.hparams.get("variance")
|
||||||
|
|
||||||
self.conditional_distribution = GaussianPrior(variance)
|
self._conditional_distribution = GaussianPrior(variance)
|
||||||
self.loss = LossLayer(rslvq_loss)
|
self.loss = LossLayer(rslvq_loss)
|
||||||
|
|
||||||
|
|
||||||
|
@ -17,6 +17,7 @@ class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
|||||||
TODO Allow non-2D grids
|
TODO Allow non-2D grids
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
_grid: torch.Tensor
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
h, w = hparams.get("shape")
|
h, w = hparams.get("shape")
|
||||||
@ -92,10 +93,10 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
|||||||
self.hparams.setdefault("age_limit", 10)
|
self.hparams.setdefault("age_limit", 10)
|
||||||
self.hparams.setdefault("lm", 1)
|
self.hparams.setdefault("lm", 1)
|
||||||
|
|
||||||
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
|
self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
|
||||||
self.topology_layer = ConnectionTopology(
|
self.topology_layer = ConnectionTopology(
|
||||||
agelimit=self.hparams.age_limit,
|
agelimit=self.hparams["age_limit"],
|
||||||
num_prototypes=self.hparams.num_prototypes,
|
num_prototypes=self.hparams["num_prototypes"],
|
||||||
)
|
)
|
||||||
|
|
||||||
def training_step(self, train_batch, batch_idx):
|
def training_step(self, train_batch, batch_idx):
|
||||||
@ -108,12 +109,9 @@ class NeuralGas(UnsupervisedPrototypeModel):
|
|||||||
self.log("loss", loss)
|
self.log("loss", loss)
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
# def training_epoch_end(self, training_step_outputs):
|
|
||||||
# print(f"{self.trainer.lr_schedulers}")
|
|
||||||
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
|
|
||||||
|
|
||||||
|
|
||||||
class GrowingNeuralGas(NeuralGas):
|
class GrowingNeuralGas(NeuralGas):
|
||||||
|
errors: torch.Tensor
|
||||||
|
|
||||||
def __init__(self, hparams, **kwargs):
|
def __init__(self, hparams, **kwargs):
|
||||||
super().__init__(hparams, **kwargs)
|
super().__init__(hparams, **kwargs)
|
||||||
@ -123,7 +121,10 @@ class GrowingNeuralGas(NeuralGas):
|
|||||||
self.hparams.setdefault("insert_reduction", 0.1)
|
self.hparams.setdefault("insert_reduction", 0.1)
|
||||||
self.hparams.setdefault("insert_freq", 10)
|
self.hparams.setdefault("insert_freq", 10)
|
||||||
|
|
||||||
errors = torch.zeros(self.hparams.num_prototypes, device=self.device)
|
errors = torch.zeros(
|
||||||
|
self.hparams["num_prototypes"],
|
||||||
|
device=self.device,
|
||||||
|
)
|
||||||
self.register_buffer("errors", errors)
|
self.register_buffer("errors", errors)
|
||||||
|
|
||||||
def training_step(self, train_batch, _batch_idx):
|
def training_step(self, train_batch, _batch_idx):
|
||||||
@ -138,7 +139,7 @@ class GrowingNeuralGas(NeuralGas):
|
|||||||
dp = d * mask
|
dp = d * mask
|
||||||
|
|
||||||
self.errors += torch.sum(dp * dp)
|
self.errors += torch.sum(dp * dp)
|
||||||
self.errors *= self.hparams.step_reduction
|
self.errors *= self.hparams["step_reduction"]
|
||||||
|
|
||||||
self.topology_layer(d)
|
self.topology_layer(d)
|
||||||
self.log("loss", loss)
|
self.log("loss", loss)
|
||||||
@ -147,7 +148,7 @@ class GrowingNeuralGas(NeuralGas):
|
|||||||
def configure_callbacks(self):
|
def configure_callbacks(self):
|
||||||
return [
|
return [
|
||||||
GNGCallback(
|
GNGCallback(
|
||||||
reduction=self.hparams.insert_reduction,
|
reduction=self.hparams["insert_reduction"],
|
||||||
freq=self.hparams.insert_freq,
|
freq=self.hparams["insert_freq"],
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
"""Visualization Callbacks."""
|
"""Visualization Callbacks."""
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
from typing import Sized
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
@ -7,6 +10,7 @@ import torchvision
|
|||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
from prototorch.utils.colors import get_colors, get_legend_handles
|
from prototorch.utils.colors import get_colors, get_legend_handles
|
||||||
from prototorch.utils.utils import mesh2d
|
from prototorch.utils.utils import mesh2d
|
||||||
|
from pytorch_lightning.loggers import TensorBoardLogger
|
||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
|
||||||
|
|
||||||
@ -33,8 +37,13 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
|
|
||||||
if data:
|
if data:
|
||||||
if isinstance(data, Dataset):
|
if isinstance(data, Dataset):
|
||||||
|
if isinstance(data, Sized):
|
||||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||||
elif isinstance(data, torch.utils.data.DataLoader):
|
else:
|
||||||
|
# TODO: Add support for non-sized datasets
|
||||||
|
raise NotImplementedError(
|
||||||
|
"Data must be a dataset with a __len__ method.")
|
||||||
|
elif isinstance(data, DataLoader):
|
||||||
x = torch.tensor([])
|
x = torch.tensor([])
|
||||||
y = torch.tensor([])
|
y = torch.tensor([])
|
||||||
for x_b, y_b in data:
|
for x_b, y_b in data:
|
||||||
@ -122,7 +131,7 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
else:
|
else:
|
||||||
plt.show(block=self.block)
|
plt.show(block=self.block)
|
||||||
|
|
||||||
def on_epoch_end(self, trainer, pl_module):
|
def on_train_epoch_end(self, trainer, pl_module):
|
||||||
if not self.precheck(trainer):
|
if not self.precheck(trainer):
|
||||||
return True
|
return True
|
||||||
self.visualize(pl_module)
|
self.visualize(pl_module)
|
||||||
@ -131,6 +140,9 @@ class Vis2DAbstract(pl.Callback):
|
|||||||
def on_train_end(self, trainer, pl_module):
|
def on_train_end(self, trainer, pl_module):
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
def visualize(self, pl_module):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
class VisGLVQ2D(Vis2DAbstract):
|
class VisGLVQ2D(Vis2DAbstract):
|
||||||
|
|
||||||
@ -291,9 +303,13 @@ class VisImgComp(Vis2DAbstract):
|
|||||||
self.add_embedding = add_embedding
|
self.add_embedding = add_embedding
|
||||||
self.embedding_data = embedding_data
|
self.embedding_data = embedding_data
|
||||||
|
|
||||||
def on_train_start(self, trainer, pl_module):
|
def on_train_start(self, _, pl_module):
|
||||||
|
if isinstance(pl_module.logger, TensorBoardLogger):
|
||||||
tb = pl_module.logger.experiment
|
tb = pl_module.logger.experiment
|
||||||
|
|
||||||
|
# Add embedding
|
||||||
if self.add_embedding:
|
if self.add_embedding:
|
||||||
|
if self.x_train is not None and self.y_train is not None:
|
||||||
ind = np.random.choice(len(self.x_train),
|
ind = np.random.choice(len(self.x_train),
|
||||||
size=self.embedding_data,
|
size=self.embedding_data,
|
||||||
replace=False)
|
replace=False)
|
||||||
@ -304,17 +320,28 @@ class VisImgComp(Vis2DAbstract):
|
|||||||
tag="Data Embedding",
|
tag="Data Embedding",
|
||||||
metadata=self.y_train[ind],
|
metadata=self.y_train[ind],
|
||||||
metadata_header=None)
|
metadata_header=None)
|
||||||
|
else:
|
||||||
|
raise ValueError("No data for add embedding flag")
|
||||||
|
|
||||||
|
# Random Data
|
||||||
if self.random_data:
|
if self.random_data:
|
||||||
|
if self.x_train is not None:
|
||||||
ind = np.random.choice(len(self.x_train),
|
ind = np.random.choice(len(self.x_train),
|
||||||
size=self.random_data,
|
size=self.random_data,
|
||||||
replace=False)
|
replace=False)
|
||||||
data = self.x_train[ind]
|
data = self.x_train[ind]
|
||||||
grid = torchvision.utils.make_grid(data, nrow=self.num_columns)
|
grid = torchvision.utils.make_grid(data,
|
||||||
|
nrow=self.num_columns)
|
||||||
tb.add_image(tag="Data",
|
tb.add_image(tag="Data",
|
||||||
img_tensor=grid,
|
img_tensor=grid,
|
||||||
global_step=None,
|
global_step=None,
|
||||||
dataformats=self.dataformats)
|
dataformats=self.dataformats)
|
||||||
|
else:
|
||||||
|
raise ValueError("No data for random data flag")
|
||||||
|
|
||||||
|
else:
|
||||||
|
warnings.warn(
|
||||||
|
f"TensorBoardLogger is required, got {type(pl_module.logger)}")
|
||||||
|
|
||||||
def add_to_tensorboard(self, trainer, pl_module):
|
def add_to_tensorboard(self, trainer, pl_module):
|
||||||
tb = pl_module.logger.experiment
|
tb = pl_module.logger.experiment
|
||||||
|
Loading…
Reference in New Issue
Block a user