feat: ImageGTLVQ and SiameseGTLVQ with examples

This commit is contained in:
Christoph
2021-11-15 08:50:33 +00:00
committed by Jensun Ravichandran
parent d3bb430104
commit a9edf06507
5 changed files with 218 additions and 79 deletions

View File

@@ -13,8 +13,10 @@ from .glvq import (
LVQMLN,
ImageGLVQ,
ImageGMLVQ,
ImageGTLVQ,
SiameseGLVQ,
SiameseGMLVQ,
SiameseGTLVQ,
)
from .knn import KNN
from .lvq import LVQ1, LVQ21, MedianLVQ

View File

@@ -284,22 +284,28 @@ class LGMLVQ(GMLVQ):
class GTLVQ(LGMLVQ):
"""Localized and Generalized Matrix Learning Vector Quantization."""
"""Localized and Generalized Tangent Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
omega_initializer = kwargs.get("omega_initializer")
omega = omega_initializer.generate(self.hparams.input_dim,
self.hparams.latent_dim)
if omega_initializer is not None:
subspace = omega_initializer.generate(self.hparams.input_dim,
self.hparams.latent_dim)
omega = torch.repeat_interleave(subspace.unsqueeze(0),
self.num_prototypes,
dim=0)
else:
omega = torch.rand(
self.num_prototypes,
self.hparams.input_dim,
self.hparams.latent_dim,
device=self.device,
)
# Re-register `_omega` to override the one from the super class.
omega = torch.rand(
self.num_prototypes,
self.hparams.input_dim,
self.hparams.latent_dim,
device=self.device,
)
self.register_parameter("_omega", Parameter(omega))
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
@@ -307,6 +313,14 @@ class GTLVQ(LGMLVQ):
self._omega.copy_(orthogonalization(self._omega))
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
"""Generalized Tangent Learning Vector Quantization.
Implemented as a Siamese network with a linear transformation backbone.
"""
class GLVQ1(GLVQ):
"""Generalized Learning Vector Quantization 1."""
def __init__(self, hparams, **kwargs):
@@ -339,3 +353,17 @@ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
after updates.
"""
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
"""GTLVQ for training on image data.
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
after updates.
"""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
with torch.no_grad():
self._omega.copy_(orthogonalization(self._omega))