Use Components instead of Prototypes and refactor old examples

This commit is contained in:
Jensun Ravichandran
2021-04-29 17:05:41 +02:00
parent eeb684b3b6
commit a16bebd0c4
7 changed files with 216 additions and 235 deletions

View File

@@ -1,16 +1,17 @@
import os
import numpy as np
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
from matplotlib.offsetbox import AnchoredText
from prototorch.utils.celluloid import Camera
from prototorch.utils.colors import color_scheme
from prototorch.utils.utils import gif_from_dir, make_directory, prettify_string
from prototorch.utils.utils import (gif_from_dir, make_directory,
prettify_string)
class VisWeights(Callback):
class VisWeights(pl.Callback):
"""Abstract weight visualization callback."""
def __init__(
self,
@@ -258,3 +259,155 @@ class VisPointProtos(VisWeights):
epoch = trainer.current_epoch
self._display_logs(self.ax, epoch, logs)
self._show_and_save(epoch)
class VisGLVQ2D(pl.Callback):
def __init__(self,
x_train,
y_train,
title="Prototype Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module):
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.axis("off")
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=plabels,
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50,
)
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)
class VisSiameseGLVQ2D(pl.Callback):
def __init__(self,
x_train,
y_train,
title="Prototype Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module):
protos = pl_module.prototypes
plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train
x_train = pl_module.backbone(torch.Tensor(x_train)).detach()
protos = pl_module.backbone(torch.Tensor(protos)).detach()
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.axis("off")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=plabels,
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50,
)
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict_latent(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
tb = pl_module.logger.experiment
tb.add_figure(
tag=f"{self.title}",
figure=self.fig,
global_step=trainer.current_epoch,
close=False,
)
plt.pause(0.1)
class VisNG2D(pl.Callback):
def __init__(self,
x_train,
y_train,
title="Neural Gas Visualization",
cmap="viridis"):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
def on_epoch_end(self, trainer, pl_module):
protos = pl_module.prototypes
cmat = pl_module.topology_layer.cmat.cpu().numpy()
# Visualize the data and the prototypes
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
ax.scatter(self.x_train[:, 0],
self.x_train[:, 1],
c=self.y_train,
edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c="k",
edgecolor="k",
marker="D",
s=50,
)
# Draw connections
for i in range(len(protos)):
for j in range(len(protos)):
if cmat[i][j]:
ax.plot(
[protos[i, 0], protos[j, 0]],
[protos[i, 1], protos[j, 1]],
"k-",
)
plt.pause(0.01)

View File

@@ -1,14 +1,16 @@
import pytorch_lightning as pl
import torch
import torchmetrics
from prototorch.components import LabeledComponents
from prototorch.functions.competitions import wtac
from prototorch.functions.distances import euclidean_distance
from prototorch.functions.losses import glvq_loss
from prototorch.modules.prototypes import Prototypes1D
from .abstract import AbstractPrototypeModel
class GLVQ(pl.LightningModule):
class GLVQ(AbstractPrototypeModel):
"""Generalized Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__()
@@ -18,29 +20,18 @@ class GLVQ(pl.LightningModule):
# Default Values
self.hparams.setdefault("distance", euclidean_distance)
self.proto_layer = Prototypes1D(
input_dim=self.hparams.input_dim,
nclasses=self.hparams.nclasses,
prototypes_per_class=self.hparams.prototypes_per_class,
prototype_initializer=self.hparams.prototype_initializer,
**kwargs)
self.proto_layer = LabeledComponents(
labels=(self.hparams.nclasses, self.hparams.prototypes_per_class),
initializer=self.hparams.prototype_initializer)
self.train_acc = torchmetrics.Accuracy()
@property
def prototypes(self):
return self.proto_layer.prototypes.detach().numpy()
@property
def prototype_labels(self):
return self.proto_layer.prototype_labels.detach().numpy()
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
return optimizer
return self.proto_layer.component_labels.detach().numpy()
def forward(self, x):
protos = self.proto_layer.prototypes
protos, _ = self.proto_layer()
dis = self.hparams.distance(x, protos)
return dis
@@ -48,7 +39,7 @@ class GLVQ(pl.LightningModule):
x, y = train_batch
x = x.view(x.size(0), -1)
dis = self(x)
plabels = self.proto_layer.prototype_labels
plabels = self.proto_layer.component_labels
mu = glvq_loss(dis, y, prototype_labels=plabels)
loss = mu.sum(dim=0)
self.log("train_loss", loss)
@@ -77,7 +68,7 @@ class GLVQ(pl.LightningModule):
# model.eval() # ?!
with torch.no_grad():
d = self(x)
plabels = self.proto_layer.prototype_labels
plabels = self.proto_layer.component_labels
y_pred = wtac(d, plabels)
return y_pred.numpy()
@@ -89,7 +80,7 @@ class ImageGLVQ(GLVQ):
clamping after updates.
"""
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.proto_layer.prototypes.data.clamp_(0.0, 1.0)
self.proto_layer.components.data.clamp_(0.0, 1.0)
class SiameseGLVQ(GLVQ):
@@ -115,7 +106,7 @@ class SiameseGLVQ(GLVQ):
def forward(self, x):
self.sync_backbones()
protos = self.proto_layer.prototypes
protos, _ = self.proto_layer()
latent_x = self.backbone(x)
latent_protos = self.backbone_dependent(protos)
@@ -126,9 +117,8 @@ class SiameseGLVQ(GLVQ):
def predict_latent(self, x):
# model.eval() # ?!
with torch.no_grad():
protos = self.proto_layer.prototypes
protos, plabels = self.proto_layer()
latent_protos = self.backbone_dependent(protos)
d = euclidean_distance(x, latent_protos)
plabels = self.proto_layer.prototype_labels
y_pred = wtac(d, plabels)
return y_pred.numpy()

View File

@@ -1,10 +1,13 @@
import pytorch_lightning as pl
import torch
from prototorch.components import Components
from prototorch.components import initializers as cinit
from prototorch.functions.distances import euclidean_distance
from prototorch.modules import Prototypes1D
from prototorch.modules.losses import NeuralGasEnergy
from .abstract import AbstractPrototypeModel
class EuclideanDistance(torch.nn.Module):
def forward(self, x, y):
@@ -34,41 +37,35 @@ class ConnectionTopology(torch.nn.Module):
return f"agelimit: {self.agelimit}"
class NeuralGas(pl.LightningModule):
class NeuralGas(AbstractPrototypeModel):
def __init__(self, hparams, **kwargs):
super().__init__()
self.save_hyperparameters(hparams)
# Default Values
self.hparams.setdefault("input_dim", 2)
self.hparams.setdefault("agelimit", 10)
self.hparams.setdefault("lm", 1)
self.hparams.setdefault("prototype_initializer", "zeros")
self.hparams.setdefault("prototype_initializer",
cinit.ZerosInitializer(self.hparams.input_dim))
self.proto_layer = Prototypes1D(
input_dim=self.hparams.input_dim,
nclasses=self.hparams.nclasses,
prototypes_per_class=self.hparams.prototypes_per_class,
prototype_initializer=self.hparams.prototype_initializer,
**kwargs,
)
self.proto_layer = Components(
self.hparams.num_prototypes,
initializer=self.hparams.prototype_initializer)
self.distance_layer = EuclideanDistance()
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
self.topology_layer = ConnectionTopology(
agelimit=self.hparams.agelimit,
num_prototypes=len(self.proto_layer.prototypes),
num_prototypes=self.hparams.num_prototypes,
)
def training_step(self, train_batch, batch_idx):
x, _ = train_batch
protos, _ = self.proto_layer()
x = train_batch[0]
protos = self.proto_layer()
d = self.distance_layer(x, protos)
cost, order = self.energy_layer(d)
self.topology_layer(d)
return cost
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
return optimizer