Use Components instead of Prototypes and refactor old examples
This commit is contained in:
@@ -1,63 +1,14 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
@@ -69,24 +20,21 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_initializer="stratified_mean",
|
||||
lr=0.1,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=cinit.StratifiedMeanInitializer(
|
||||
torch.Tensor(x_train), torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(hparams, data=[x_train, y_train])
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=50, callbacks=[vis])
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=50,
|
||||
callbacks=[VisGLVQ2D(x_train, y_train)],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
@@ -3,63 +3,13 @@
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisNG2D
|
||||
from prototorch.models.neural_gas import NeuralGas
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.neural_gas import NeuralGas
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Neural Gas Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module: NeuralGas):
|
||||
protos = pl_module.proto_layer.prototypes.detach().cpu().numpy()
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
# Visualize the data and the prototypes
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(self.x_train[:, 0],
|
||||
self.x_train[:, 1],
|
||||
c=self.y_train,
|
||||
edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c="k",
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
|
||||
# Draw connections
|
||||
for i in range(len(protos)):
|
||||
for j in range(len(protos)):
|
||||
if cmat[i][j]:
|
||||
ax.plot(
|
||||
[protos[i, 0], protos[j, 0]],
|
||||
[protos[i, 1], protos[j, 1]],
|
||||
"k-",
|
||||
)
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
@@ -68,7 +18,6 @@ if __name__ == "__main__":
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
|
||||
y_single_class = np.zeros_like(y_train)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
@@ -77,20 +26,18 @@ if __name__ == "__main__":
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=1,
|
||||
prototypes_per_class=30,
|
||||
prototype_initializer="rand",
|
||||
lr=0.1,
|
||||
num_prototypes=30,
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = NeuralGas(hparams, data=[x_train, y_single_class])
|
||||
model = NeuralGas(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
vis = VisNG2D(x_train, y_train)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
|
@@ -1,70 +1,15 @@
|
||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.components import (StratifiedMeanInitializer,
|
||||
StratifiedSelectionInitializer)
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import SiameseGLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.glvq import SiameseGLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
x_train = pl_module.backbone(torch.Tensor(x_train)).detach()
|
||||
protos = pl_module.backbone(torch.Tensor(protos)).detach()
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.axis("off")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 0.2, x[:, 0].max() + 0.2
|
||||
y_min, y_max = x[:, 1].min() - 0.2, x[:, 1].max() + 0.2
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict_latent(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
tb = pl_module.logger.experiment
|
||||
tb.add_figure(
|
||||
tag=f"{self.title}",
|
||||
figure=self.fig,
|
||||
global_step=trainer.current_epoch,
|
||||
close=False,
|
||||
)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
@@ -90,23 +35,24 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="stratified_mean",
|
||||
prototype_initializer=StratifiedMeanInitializer(
|
||||
torch.Tensor(x_train), torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = SiameseGLVQ(hparams,
|
||||
backbone_module=Backbone,
|
||||
data=[x_train, y_train])
|
||||
model = SiameseGLVQ(
|
||||
hparams,
|
||||
backbone_module=Backbone,
|
||||
)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
vis = VisSiameseGLVQ2D(x_train, y_train)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||
|
Reference in New Issue
Block a user