Update example scripts

This commit is contained in:
Jensun Ravichandran 2021-04-21 15:52:42 +02:00
parent ee39ac516d
commit 985cdd3120
2 changed files with 79 additions and 28 deletions

View File

@ -60,12 +60,15 @@ class VisualizationCallback(pl.Callback):
if __name__ == "__main__":
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
# Initialize the model
model = GLVQ(
input_dim=x_train.shape[1],
nclasses=3,
@ -74,13 +77,20 @@ if __name__ == "__main__":
data=[x_train, y_train],
lr=0.1,
)
# Model summary
print(model)
# Callbacks
vis = VisualizationCallback(x_train, y_train)
# Setup trainer
trainer = pl.Trainer(max_epochs=1000, callbacks=[vis])
# Training loop
trainer.fit(model, train_loader)
# Visualization
protos = model.prototypes
plabels = model.prototype_labels
visualize(x_train, y_train, protos, plabels)

View File

@ -1,44 +1,85 @@
"""GLVQ example using the MNIST dataset.
This script also shows how to use Tensorboard for visualizing the prototypes.
"""
import pytorch_lightning as pl
import torchvision
from matplotlib import pyplot as plt
from prototorch.functions.initializers import stratified_mean
from prototorch.models.glvq import ImageGLVQ
from torch.utils.data import DataLoader, random_split
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
def plot_protos(protos, shape=(-1, 1, 28, 28), nrow=2):
grid = torchvision.utils.make_grid(protos.reshape(*shape), nrow=nrow)
grid = grid.permute((1, 2, 0))
plt.imshow(grid)
class VisualizationCallback(pl.Callback):
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
super().__init__()
self.to_shape = to_shape
self.nrow = nrow
def on_epoch_end(self, trainer, pl_module):
protos = pl_module.proto_layer.prototypes.detach().cpu()
protos_img = protos.reshape(self.to_shape)
grid = torchvision.utils.make_grid(protos_img, nrow=self.nrow)
# grid = grid.permute((1, 2, 0))
tb = pl_module.logger.experiment
tb.add_image(tag="MNIST Prototypes",
img_tensor=grid,
global_step=trainer.current_epoch,
dataformats="CHW")
if __name__ == "__main__":
dataset = MNIST("./datasets",
train=True,
download=True,
transform=transforms.ToTensor())
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
train_loader = DataLoader(mnist_train, batch_size=1024)
val_loader = DataLoader(mnist_val, batch_size=1024)
model = ImageGLVQ(input_dim=28 * 28, nclasses=10, prototypes_per_class=2)
# Warm-start prototypes
prototypes, prototype_labels = stratified_mean(
x_train,
y_train,
prototype_distribution=self.prototype_distribution,
one_hot=one_hot_labels,
# Dataset
mnist_train = MNIST(
"./datasets",
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]),
)
mnist_test = MNIST(
"./datasets",
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]),
)
trainer = pl.Trainer(gpus=0, max_epochs=3)
# Dataloaders
train_loader = DataLoader(mnist_train, batch_size=1024)
test_loader = DataLoader(mnist_test, batch_size=1024)
trainer.fit(model, train_loader, val_loader)
# Grab the full dataset to warm-start prototypes
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
x = x.view(len(mnist_train), -1)
protos = model.proto_layer.prototypes.detach().cpu()
plot_protos(protos, shape=(-1, 1, 28, 28), nrow=4)
plt.show(block=True)
# Initialize the model
model = ImageGLVQ(input_dim=28 * 28,
nclasses=10,
prototypes_per_class=10,
prototype_initializer="stratified_mean",
data=[x, y])
# Model summary
print(model)
# Callbacks
vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=10)
# Setup trainer
trainer = pl.Trainer(
gpus=0, # change to use GPUs for training
max_epochs=10,
callbacks=[vis],
# accelerator="ddp_cpu", # DEBUG-ONLY
# num_processes=2, # DEBUG-ONLY
)
# Training loop
trainer.fit(model, train_loader, test_loader)