[WIP] Update CBC implementation to use SiameseGLVQ
This commit is contained in:
@@ -6,13 +6,10 @@ import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
pl.utilities.seed.seed_everything(seed=3)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
@@ -21,18 +18,19 @@ if __name__ == "__main__":
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
num_components=5,
|
||||
component_initializer=pt.components.SSI(train_ds, noise=0.01),
|
||||
lr=0.01,
|
||||
distribution=[3, 2, 2],
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.CBC(hparams)
|
||||
model = pt.models.CBC(
|
||||
hparams,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=0.01),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
dvis = pt.models.VisCBC2D(data=(x_train, y_train),
|
||||
dvis = pt.models.VisCBC2D(data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=300,
|
||||
axis_off=True)
|
||||
|
Reference in New Issue
Block a user