52
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										52
									
								
								README.md
									
									
									
									
									
								
							| @@ -5,9 +5,15 @@ PyTorch-Lightning. | ||||
|  | ||||
| ## Installation | ||||
|  | ||||
| To install this plugin, simple install | ||||
| [ProtoTorch](https://github.com/si-cim/prototorch) first by following the | ||||
| installation instructions there and then install this plugin by doing: | ||||
| To install this plugin, first install | ||||
| [ProtoTorch](https://github.com/si-cim/prototorch) with: | ||||
|  | ||||
| ```sh | ||||
| git clone https://github.com/si-cim/prototorch.git && cd prototorch | ||||
| pip install -e . | ||||
| ``` | ||||
|  | ||||
| and then install the plugin itself with: | ||||
|  | ||||
| ```sh | ||||
| git clone https://github.com/si-cim/prototorch_models.git && cd prototorch_models | ||||
| @@ -28,9 +34,14 @@ following: | ||||
| ```sh | ||||
| export WORKON_HOME=~/pyenvs | ||||
| mkdir -p $WORKON_HOME | ||||
| source /usr/local/bin/virtualenvwrapper.sh  # might be different | ||||
| # source ~/.local/bin/virtualenvwrapper.sh | ||||
| source /usr/local/bin/virtualenvwrapper.sh  # location may vary | ||||
| mkvirtualenv pt | ||||
| ``` | ||||
|  | ||||
| Once you have a virtual environment setup, you can start install the `models` | ||||
| plugin with: | ||||
|  | ||||
| ```sh | ||||
| workon pt | ||||
| git clone git@github.com:si-cim/prototorch_models.git | ||||
| cd prototorch_models | ||||
| @@ -43,18 +54,31 @@ To assist in the development process, you may also find it useful to install | ||||
|  | ||||
| ## Available models | ||||
|  | ||||
| - GLVQ | ||||
| - Generalized Learning Vector Quantization (GLVQ) | ||||
| - Generalized Matrix Learning Vector Quantization (GMLVQ) | ||||
| - Limited-Rank Matrix Learning Vector Quantization (LiRaMLVQ) | ||||
| - Siamese GLVQ | ||||
| - Neural Gas | ||||
| - Neural Gas (NG) | ||||
|  | ||||
| ## Work in Progress | ||||
| - CBC | ||||
|  | ||||
| - Classification-By-Components Network (CBC) | ||||
| - Learning Vector Quantization Multi-Layer Network (LVQMLN) | ||||
|  | ||||
| ## Planned models | ||||
| - GMLVQ | ||||
|  | ||||
| - Local-Matrix GMLVQ | ||||
| - Limited-Rank GMLVQ | ||||
| - GTLVQ | ||||
| - RSLVQ | ||||
| - PLVQ | ||||
| - LVQMLN | ||||
| - Generalized Tangent Learning Vector Quantization (GTLVQ) | ||||
| - Robust Soft Learning Vector Quantization (RSLVQ) | ||||
| - Probabilistic Learning Vector Quantization (PLVQ) | ||||
| - Self-Incremental Learning Vector Quantization (SILVQ) | ||||
| - K-Nearest Neighbors (KNN) | ||||
| - Learning Vector Quantization 1 (LVQ1) | ||||
|  | ||||
| ## FAQ | ||||
|  | ||||
| ### How do I update the plugin? | ||||
|  | ||||
| If you have already cloned and installed `prototorch` and the | ||||
| `prototorch_models` plugin with the `-e` flag via `pip`, all you have to do is | ||||
| navigate to those folders from your terminal and do `git pull` to update. | ||||
|   | ||||
| @@ -1,129 +0,0 @@ | ||||
| """CBC example using the Iris dataset.""" | ||||
|  | ||||
| import numpy as np | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from matplotlib import pyplot as plt | ||||
| from sklearn.datasets import make_circles | ||||
| from torch.utils.data import DataLoader | ||||
|  | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.callbacks.visualization import VisPointProtos | ||||
| from prototorch.models.cbc import CBC, euclidean_similarity | ||||
| from prototorch.models.glvq import GLVQ | ||||
|  | ||||
|  | ||||
| class VisualizationCallback(pl.Callback): | ||||
|     def __init__( | ||||
|         self, | ||||
|         x_train, | ||||
|         y_train, | ||||
|         prototype_model=True, | ||||
|         title="Prototype Visualization", | ||||
|         cmap="viridis", | ||||
|     ): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
|         self.prototype_model = prototype_model | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         if self.prototype_model: | ||||
|             protos = pl_module.prototypes | ||||
|             color = pl_module.prototype_labels | ||||
|         else: | ||||
|             protos = pl_module.components | ||||
|             color = "k" | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.set_xlabel("Data dimension 1") | ||||
|         ax.set_ylabel("Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
|             protos[:, 1], | ||||
|             c=color, | ||||
|             cmap=self.cmap, | ||||
|             edgecolor="k", | ||||
|             marker="D", | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | ||||
|         y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), | ||||
|                              np.arange(y_min, y_max, 1 / 50)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         y_pred = pl_module.predict(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
|  | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
|         plt.pause(0.1) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     x_train, y_train = make_circles(n_samples=300, | ||||
|                                     shuffle=True, | ||||
|                                     noise=0.05, | ||||
|                                     random_state=None, | ||||
|                                     factor=0.5) | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         input_dim=x_train.shape[1], | ||||
|         nclasses=len(np.unique(y_train)), | ||||
|         prototypes_per_class=5, | ||||
|         prototype_initializer="randn", | ||||
|         lr=0.01, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = CBC( | ||||
|         hparams, | ||||
|         data=[x_train, y_train], | ||||
|         similarity=euclidean_similarity, | ||||
|     ) | ||||
|  | ||||
|     model = GLVQ(hparams, data=[x_train, y_train]) | ||||
|  | ||||
|     # Fix the component locations | ||||
|     # model.proto_layer.requires_grad_(False) | ||||
|  | ||||
|     # import sys | ||||
|     # sys.exit() | ||||
|  | ||||
|     # Model summary | ||||
|     print(model) | ||||
|  | ||||
|     # Callbacks | ||||
|     dvis = VisPointProtos( | ||||
|         data=(x_train, y_train), | ||||
|         save=True, | ||||
|         snap=False, | ||||
|         voronoi=True, | ||||
|         resolution=50, | ||||
|         pause_time=0.1, | ||||
|         make_gif=True, | ||||
|     ) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=10, | ||||
|         callbacks=[ | ||||
|             dvis, | ||||
|         ], | ||||
|     ) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
| @@ -1,112 +1,45 @@ | ||||
| """CBC example using the Iris dataset.""" | ||||
|  | ||||
| import numpy as np | ||||
| import prototorch as pt | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from matplotlib import pyplot as plt | ||||
| from sklearn.datasets import load_iris | ||||
| from torch.utils.data import DataLoader | ||||
|  | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.cbc import CBC | ||||
|  | ||||
|  | ||||
| class VisualizationCallback(pl.Callback): | ||||
|     def __init__(self, | ||||
|                  x_train, | ||||
|                  y_train, | ||||
|                  title="Prototype Visualization", | ||||
|                  cmap="viridis"): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         # protos = pl_module.prototypes | ||||
|         protos = pl_module.components | ||||
|         # plabels = pl_module.prototype_labels | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.set_xlabel("Data dimension 1") | ||||
|         ax.set_ylabel("Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
|             protos[:, 1], | ||||
|             # c=plabels, | ||||
|             c="k", | ||||
|             cmap=self.cmap, | ||||
|             edgecolor="k", | ||||
|             marker="D", | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | ||||
|         y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), | ||||
|                              np.arange(y_min, y_max, 1 / 50)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         y_pred = pl_module.predict(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
|  | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
|         plt.pause(0.1) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     from sklearn.datasets import load_iris | ||||
|     x_train, y_train = load_iris(return_X_y=True) | ||||
|     x_train = x_train[:, [0, 2]] | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|     train_ds = pt.datasets.NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Reproducibility | ||||
|     pl.utilities.seed.seed_everything(seed=2) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|     train_loader = torch.utils.data.DataLoader(train_ds, | ||||
|                                                num_workers=0, | ||||
|                                                batch_size=150) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         input_dim=x_train.shape[1], | ||||
|         nclasses=3, | ||||
|         prototypes_per_class=3, | ||||
|         prototype_initializer="stratified_mean", | ||||
|         num_components=5, | ||||
|         component_initializer=pt.components.SSI(train_ds, noise=0.01), | ||||
|         lr=0.01, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = CBC(hparams, data=[x_train, y_train]) | ||||
|  | ||||
|     # Fix the component locations | ||||
|     # model.proto_layer.requires_grad_(False) | ||||
|  | ||||
|     # Pure-positive reasonings | ||||
|     ncomps = 3 | ||||
|     nclasses = 3 | ||||
|     rmat = torch.stack( | ||||
|         [0.9 * torch.eye(ncomps), | ||||
|          torch.zeros(ncomps, nclasses)], dim=0) | ||||
|     # model.reasoning_layer.load_state_dict({"reasoning_probabilities": rmat}, | ||||
|     #                                       strict=True) | ||||
|  | ||||
|     print(model.reasoning_layer.reasoning_probabilities) | ||||
|     # import sys | ||||
|     # sys.exit() | ||||
|  | ||||
|     # Model summary | ||||
|     print(model) | ||||
|     model = pt.models.CBC(hparams) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = VisualizationCallback(x_train, y_train) | ||||
|     dvis = pt.models.VisCBC2D(data=(x_train, y_train), | ||||
|                               title="CBC Iris Example") | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=100, | ||||
|         max_epochs=200, | ||||
|         callbacks=[ | ||||
|             vis, | ||||
|             dvis, | ||||
|         ], | ||||
|     ) | ||||
|  | ||||
|   | ||||
| @@ -1,128 +0,0 @@ | ||||
| """CBC example using the MNIST dataset. | ||||
|  | ||||
| This script also shows how to use Tensorboard for visualizing the prototypes. | ||||
| """ | ||||
|  | ||||
| import argparse | ||||
|  | ||||
| import pytorch_lightning as pl | ||||
| import torchvision | ||||
| from torch.utils.data import DataLoader | ||||
| from torchvision import transforms | ||||
| from torchvision.datasets import MNIST | ||||
|  | ||||
| from prototorch.models.cbc import CBC, ImageCBC, euclidean_similarity | ||||
|  | ||||
|  | ||||
| class VisualizationCallback(pl.Callback): | ||||
|     def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2): | ||||
|         super().__init__() | ||||
|         self.to_shape = to_shape | ||||
|         self.nrow = nrow | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module: ImageCBC): | ||||
|         tb = pl_module.logger.experiment | ||||
|  | ||||
|         # components | ||||
|         components = pl_module.components | ||||
|         components_img = components.reshape(self.to_shape) | ||||
|         grid = torchvision.utils.make_grid(components_img, nrow=self.nrow) | ||||
|         tb.add_image( | ||||
|             tag="MNIST Components", | ||||
|             img_tensor=grid, | ||||
|             global_step=trainer.current_epoch, | ||||
|             dataformats="CHW", | ||||
|         ) | ||||
|         # Reasonings | ||||
|         reasonings = pl_module.reasonings | ||||
|         tb.add_images( | ||||
|             tag="MNIST Reasoning", | ||||
|             img_tensor=reasonings, | ||||
|             global_step=trainer.current_epoch, | ||||
|             dataformats="NCHW", | ||||
|         ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Arguments | ||||
|     parser = argparse.ArgumentParser() | ||||
|     parser.add_argument("--epochs", | ||||
|                         type=int, | ||||
|                         default=10, | ||||
|                         help="Epochs to train.") | ||||
|     parser.add_argument("--lr", | ||||
|                         type=float, | ||||
|                         default=0.001, | ||||
|                         help="Learning rate.") | ||||
|     parser.add_argument("--batch_size", | ||||
|                         type=int, | ||||
|                         default=256, | ||||
|                         help="Batch size.") | ||||
|     parser.add_argument("--gpus", | ||||
|                         type=int, | ||||
|                         default=0, | ||||
|                         help="Number of GPUs to use.") | ||||
|     parser.add_argument("--ppc", | ||||
|                         type=int, | ||||
|                         default=1, | ||||
|                         help="Prototypes-Per-Class.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     # Dataset | ||||
|     mnist_train = MNIST( | ||||
|         "./datasets", | ||||
|         train=True, | ||||
|         download=True, | ||||
|         transform=transforms.Compose([ | ||||
|             transforms.ToTensor(), | ||||
|             transforms.Normalize((0.1307, ), (0.3081, )) | ||||
|         ]), | ||||
|     ) | ||||
|     mnist_test = MNIST( | ||||
|         "./datasets", | ||||
|         train=False, | ||||
|         download=True, | ||||
|         transform=transforms.Compose([ | ||||
|             transforms.ToTensor(), | ||||
|             transforms.Normalize((0.1307, ), (0.3081, )) | ||||
|         ]), | ||||
|     ) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(mnist_train, batch_size=32) | ||||
|     test_loader = DataLoader(mnist_test, batch_size=32) | ||||
|  | ||||
|     # Grab the full dataset to warm-start prototypes | ||||
|     x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train)))) | ||||
|     x = x.view(len(mnist_train), -1) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         input_dim=28 * 28, | ||||
|         nclasses=10, | ||||
|         prototypes_per_class=args.ppc, | ||||
|         prototype_initializer="randn", | ||||
|         lr=0.01, | ||||
|         similarity=euclidean_similarity, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = CBC(hparams, data=[x, y]) | ||||
|     # Model summary | ||||
|     print(model) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         gpus=args.gpus,  # change to use GPUs for training | ||||
|         max_epochs=args.epochs, | ||||
|         callbacks=[vis], | ||||
|         track_grad_norm=2, | ||||
|         # accelerator="ddp_cpu",  # DEBUG-ONLY | ||||
|         # num_processes=2,  # DEBUG-ONLY | ||||
|     ) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader, test_loader) | ||||
| @@ -1,135 +0,0 @@ | ||||
| """CBC example using the Iris dataset.""" | ||||
|  | ||||
| import numpy as np | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from matplotlib import pyplot as plt | ||||
| from torch.utils.data import DataLoader | ||||
|  | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.cbc import CBC | ||||
|  | ||||
|  | ||||
| class VisualizationCallback(pl.Callback): | ||||
|     def __init__( | ||||
|         self, | ||||
|         x_train, | ||||
|         y_train, | ||||
|         prototype_model=True, | ||||
|         title="Prototype Visualization", | ||||
|         cmap="viridis", | ||||
|     ): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
|         self.prototype_model = prototype_model | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         if self.prototype_model: | ||||
|             protos = pl_module.prototypes | ||||
|             color = pl_module.prototype_labels | ||||
|         else: | ||||
|             protos = pl_module.components | ||||
|             color = "k" | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.set_xlabel("Data dimension 1") | ||||
|         ax.set_ylabel("Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
|             protos[:, 1], | ||||
|             c=color, | ||||
|             cmap=self.cmap, | ||||
|             edgecolor="k", | ||||
|             marker="D", | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | ||||
|         y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), | ||||
|                              np.arange(y_min, y_max, 1 / 50)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         y_pred = pl_module.predict(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
|  | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
|         plt.pause(0.1) | ||||
|  | ||||
|  | ||||
| def make_spirals(n_samples=500, noise=0.3): | ||||
|     def get_samples(n, delta_t): | ||||
|         points = [] | ||||
|         for i in range(n): | ||||
|             r = i / n_samples * 5 | ||||
|             t = 1.75 * i / n * 2 * np.pi + delta_t | ||||
|             x = r * np.sin(t) + np.random.rand(1) * noise | ||||
|             y = r * np.cos(t) + np.random.rand(1) * noise | ||||
|             points.append([x, y]) | ||||
|         return points | ||||
|  | ||||
|     n = n_samples // 2 | ||||
|     positive = get_samples(n=n, delta_t=0) | ||||
|     negative = get_samples(n=n, delta_t=np.pi) | ||||
|     x = np.concatenate( | ||||
|         [np.array(positive).reshape(n, -1), | ||||
|          np.array(negative).reshape(n, -1)], | ||||
|         axis=0) | ||||
|     y = np.concatenate([np.zeros(n), np.ones(n)]) | ||||
|     return x, y | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     x_train, y_train = make_spirals(n_samples=1000, noise=0.3) | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         input_dim=x_train.shape[1], | ||||
|         nclasses=2, | ||||
|         prototypes_per_class=40, | ||||
|         prototype_initializer="stratified_random", | ||||
|         lr=0.05, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model_class = CBC | ||||
|     model = model_class(hparams, data=[x_train, y_train]) | ||||
|  | ||||
|     # Pure-positive reasonings | ||||
|     new_reasoning = torch.zeros_like( | ||||
|         model.reasoning_layer.reasoning_probabilities) | ||||
|     for i, label in enumerate(model.proto_layer.prototype_labels): | ||||
|         new_reasoning[0][0][i][int(label)] = 1.0 | ||||
|  | ||||
|     model.reasoning_layer.reasoning_probabilities.data = new_reasoning | ||||
|  | ||||
|     # Model summary | ||||
|     print(model) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = VisualizationCallback(x_train, | ||||
|                                 y_train, | ||||
|                                 prototype_model=hasattr(model, "prototypes")) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=500, | ||||
|         callbacks=[ | ||||
|             vis, | ||||
|         ], | ||||
|     ) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
| @@ -1,146 +0,0 @@ | ||||
| """CBC example using the spirals dataset. | ||||
|  | ||||
| This example shows how to jump start a model by transferring weights from | ||||
| another more stable model. | ||||
| """ | ||||
|  | ||||
| import numpy as np | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from matplotlib import pyplot as plt | ||||
| from torch.utils.data import DataLoader | ||||
|  | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.cbc import CBC | ||||
| from prototorch.models.glvq import GLVQ | ||||
|  | ||||
|  | ||||
| class VisualizationCallback(pl.Callback): | ||||
|     def __init__( | ||||
|         self, | ||||
|         x_train, | ||||
|         y_train, | ||||
|         prototype_model=True, | ||||
|         title="Prototype Visualization", | ||||
|         cmap="viridis", | ||||
|     ): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
|         self.prototype_model = prototype_model | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         if self.prototype_model: | ||||
|             protos = pl_module.prototypes | ||||
|             color = pl_module.prototype_labels | ||||
|         else: | ||||
|             protos = pl_module.components | ||||
|             color = "k" | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.set_xlabel("Data dimension 1") | ||||
|         ax.set_ylabel("Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
|             protos[:, 1], | ||||
|             c=color, | ||||
|             cmap=self.cmap, | ||||
|             edgecolor="k", | ||||
|             marker="D", | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | ||||
|         y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), | ||||
|                              np.arange(y_min, y_max, 1 / 50)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         y_pred = pl_module.predict(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
|  | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
|         plt.pause(0.1) | ||||
|  | ||||
|  | ||||
| def make_spirals(n_samples=500, noise=0.3): | ||||
|     def get_samples(n, delta_t): | ||||
|         points = [] | ||||
|         for i in range(n): | ||||
|             r = i / n_samples * 5 | ||||
|             t = 1.75 * i / n * 2 * np.pi + delta_t | ||||
|             x = r * np.sin(t) + np.random.rand(1) * noise | ||||
|             y = r * np.cos(t) + np.random.rand(1) * noise | ||||
|             points.append([x, y]) | ||||
|         return points | ||||
|  | ||||
|     n = n_samples // 2 | ||||
|     positive = get_samples(n=n, delta_t=0) | ||||
|     negative = get_samples(n=n, delta_t=np.pi) | ||||
|     x = np.concatenate( | ||||
|         [np.array(positive).reshape(n, -1), | ||||
|          np.array(negative).reshape(n, -1)], | ||||
|         axis=0) | ||||
|     y = np.concatenate([np.zeros(n), np.ones(n)]) | ||||
|     return x, y | ||||
|  | ||||
|  | ||||
| def train(model, x_train, y_train, train_loader, epochs=100): | ||||
|     # Callbacks | ||||
|     vis = VisualizationCallback(x_train, | ||||
|                                 y_train, | ||||
|                                 prototype_model=hasattr(model, "prototypes")) | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=epochs, | ||||
|         callbacks=[ | ||||
|             vis, | ||||
|         ], | ||||
|     ) | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     x_train, y_train = make_spirals(n_samples=1000, noise=0.3) | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         input_dim=x_train.shape[1], | ||||
|         nclasses=2, | ||||
|         prototypes_per_class=40, | ||||
|         prototype_initializer="stratified_random", | ||||
|         lr=0.05, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     glvq_model = GLVQ(hparams, data=[x_train, y_train]) | ||||
|     cbc_model = CBC(hparams, data=[x_train, y_train]) | ||||
|  | ||||
|     # Train GLVQ | ||||
|     train(glvq_model, x_train, y_train, train_loader, epochs=10) | ||||
|  | ||||
|     # Transfer Prototypes | ||||
|     cbc_model.proto_layer.load_state_dict(glvq_model.proto_layer.state_dict()) | ||||
|     # Pure-positive reasonings | ||||
|     new_reasoning = torch.zeros_like( | ||||
|         cbc_model.reasoning_layer.reasoning_probabilities) | ||||
|     for i, label in enumerate(cbc_model.proto_layer.prototype_labels): | ||||
|         new_reasoning[0][0][i][int(label)] = 1.0 | ||||
|         new_reasoning[1][0][i][1 - int(label)] = 1.0 | ||||
|  | ||||
|     cbc_model.reasoning_layer.reasoning_probabilities.data = new_reasoning | ||||
|  | ||||
|     # Train CBC | ||||
|     train(cbc_model, x_train, y_train, train_loader, epochs=50) | ||||
| @@ -1,131 +1,40 @@ | ||||
| """GLVQ example using the Iris dataset.""" | ||||
|  | ||||
| import argparse | ||||
|  | ||||
| import numpy as np | ||||
| import prototorch as pt | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from matplotlib import pyplot as plt | ||||
| from sklearn.datasets import load_iris | ||||
| from torch.utils.data import DataLoader | ||||
|  | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.glvq import GLVQ | ||||
|  | ||||
|  | ||||
| class GLVQIris(GLVQ): | ||||
|     @staticmethod | ||||
|     def add_model_specific_args(parent_parser): | ||||
|         parser = argparse.ArgumentParser(parents=[parent_parser], | ||||
|                                          add_help=False) | ||||
|         parser.add_argument("--epochs", type=int, default=1) | ||||
|         parser.add_argument("--lr", type=float, default=1e-1) | ||||
|         parser.add_argument("--batch_size", type=int, default=150) | ||||
|         parser.add_argument("--input_dim", type=int, default=2) | ||||
|         parser.add_argument("--nclasses", type=int, default=3) | ||||
|         parser.add_argument("--prototypes_per_class", type=int, default=3) | ||||
|         parser.add_argument("--prototype_initializer", | ||||
|                             type=str, | ||||
|                             default="stratified_mean") | ||||
|         return parser | ||||
|  | ||||
|  | ||||
| class VisualizationCallback(pl.Callback): | ||||
|     def __init__(self, | ||||
|                  x_train, | ||||
|                  y_train, | ||||
|                  title="Prototype Visualization", | ||||
|                  cmap="viridis"): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         protos = pl_module.prototypes | ||||
|         plabels = pl_module.prototype_labels | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.set_xlabel("Data dimension 1") | ||||
|         ax.set_ylabel("Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
|             protos[:, 1], | ||||
|             c=plabels, | ||||
|             cmap=self.cmap, | ||||
|             edgecolor="k", | ||||
|             marker="D", | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | ||||
|         y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), | ||||
|                              np.arange(y_min, y_max, 1 / 50)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         y_pred = pl_module.predict(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
|  | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
|         plt.pause(0.1) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # For best-practices when using `argparse` with `pytorch_lightning`, see | ||||
|     # https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html | ||||
|     parser = argparse.ArgumentParser() | ||||
|  | ||||
|     # Dataset | ||||
|     from sklearn.datasets import load_iris | ||||
|     x_train, y_train = load_iris(return_X_y=True) | ||||
|     x_train = x_train[:, [0, 2]] | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|     train_ds = pt.datasets.NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|     train_loader = torch.utils.data.DataLoader(train_ds, | ||||
|                                                num_workers=0, | ||||
|                                                batch_size=150) | ||||
|  | ||||
|     # Add model specific args | ||||
|     parser = GLVQIris.add_model_specific_args(parser) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = VisualizationCallback(x_train, y_train) | ||||
|  | ||||
|     # Automatically add trainer-specific-args like `--gpus`, `--num_nodes` etc. | ||||
|     parser = pl.Trainer.add_argparse_args(parser) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer.from_argparse_args( | ||||
|         parser, | ||||
|         max_epochs=10, | ||||
|         callbacks=[ | ||||
|             vis, | ||||
|         ],  # comment this line out to disable the visualization | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         nclasses=3, | ||||
|         prototypes_per_class=2, | ||||
|         prototype_initializer=pt.components.SMI(train_ds), | ||||
|         lr=0.01, | ||||
|     ) | ||||
|     # trainer.tune(model) | ||||
|  | ||||
|     # Initialize the model | ||||
|     args = parser.parse_args() | ||||
|     model = GLVQIris(args, data=[x_train, y_train]) | ||||
|     model = pt.models.GLVQ(hparams) | ||||
|  | ||||
|     # Model summary | ||||
|     print(model) | ||||
|     # Callbacks | ||||
|     vis = pt.models.VisGLVQ2D(data=(x_train, y_train)) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=50, | ||||
|         callbacks=[vis], | ||||
|     ) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
|  | ||||
|     # Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate) | ||||
|     ckpt = "glvq_iris.ckpt" | ||||
|     trainer.save_checkpoint(ckpt) | ||||
|  | ||||
|     # Load the checkpoint | ||||
|     new_model = GLVQIris.load_from_checkpoint(checkpoint_path=ckpt) | ||||
|  | ||||
|     print(new_model) | ||||
|  | ||||
|     # Continue training | ||||
|     trainer.fit(new_model, train_loader)  # TODO See why this fails! | ||||
|   | ||||
| @@ -1,40 +0,0 @@ | ||||
| """GLVQ example using the Iris dataset.""" | ||||
|  | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from prototorch.components import initializers as cinit | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.callbacks.visualization import VisGLVQ2D | ||||
| from prototorch.models.glvq import GLVQ | ||||
| from sklearn.datasets import load_iris | ||||
| from torch.utils.data import DataLoader | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     x_train, y_train = load_iris(return_X_y=True) | ||||
|     x_train = x_train[:, [0, 2]] | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         nclasses=3, | ||||
|         prototypes_per_class=2, | ||||
|         prototype_initializer=cinit.StratifiedMeanInitializer( | ||||
|             torch.Tensor(x_train), torch.Tensor(y_train)), | ||||
|         lr=0.01, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = GLVQ(hparams, data=[x_train, y_train]) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=50, | ||||
|         callbacks=[VisGLVQ2D(x_train, y_train)], | ||||
|     ) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
| @@ -1,118 +0,0 @@ | ||||
| """GLVQ example using the MNIST dataset. | ||||
|  | ||||
| This script also shows how to use Tensorboard for visualizing the prototypes. | ||||
| """ | ||||
|  | ||||
| import argparse | ||||
|  | ||||
| import pytorch_lightning as pl | ||||
| import torchvision | ||||
| from torch.utils.data import DataLoader | ||||
| from torchvision import transforms | ||||
| from torchvision.datasets import MNIST | ||||
|  | ||||
| from prototorch.models.glvq import ImageGLVQ | ||||
|  | ||||
|  | ||||
| class VisualizationCallback(pl.Callback): | ||||
|     def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2): | ||||
|         super().__init__() | ||||
|         self.to_shape = to_shape | ||||
|         self.nrow = nrow | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         protos = pl_module.proto_layer.prototypes.detach().cpu() | ||||
|         protos_img = protos.reshape(self.to_shape) | ||||
|         grid = torchvision.utils.make_grid(protos_img, nrow=self.nrow) | ||||
|         # grid = grid.permute((1, 2, 0)) | ||||
|         tb = pl_module.logger.experiment | ||||
|         tb.add_image( | ||||
|             tag="MNIST Prototypes", | ||||
|             img_tensor=grid, | ||||
|             global_step=trainer.current_epoch, | ||||
|             dataformats="CHW", | ||||
|         ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Arguments | ||||
|     parser = argparse.ArgumentParser() | ||||
|     parser.add_argument("--epochs", | ||||
|                         type=int, | ||||
|                         default=10, | ||||
|                         help="Epochs to train.") | ||||
|     parser.add_argument("--lr", | ||||
|                         type=float, | ||||
|                         default=0.001, | ||||
|                         help="Learning rate.") | ||||
|     parser.add_argument("--batch_size", | ||||
|                         type=int, | ||||
|                         default=256, | ||||
|                         help="Batch size.") | ||||
|     parser.add_argument("--gpus", | ||||
|                         type=int, | ||||
|                         default=0, | ||||
|                         help="Number of GPUs to use.") | ||||
|     parser.add_argument("--ppc", | ||||
|                         type=int, | ||||
|                         default=1, | ||||
|                         help="Prototypes-Per-Class.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     # Dataset | ||||
|     mnist_train = MNIST( | ||||
|         "./datasets", | ||||
|         train=True, | ||||
|         download=True, | ||||
|         transform=transforms.Compose([ | ||||
|             transforms.ToTensor(), | ||||
|             transforms.Normalize((0.1307, ), (0.3081, )) | ||||
|         ]), | ||||
|     ) | ||||
|     mnist_test = MNIST( | ||||
|         "./datasets", | ||||
|         train=False, | ||||
|         download=True, | ||||
|         transform=transforms.Compose([ | ||||
|             transforms.ToTensor(), | ||||
|             transforms.Normalize((0.1307, ), (0.3081, )) | ||||
|         ]), | ||||
|     ) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(mnist_train, batch_size=1024) | ||||
|     test_loader = DataLoader(mnist_test, batch_size=1024) | ||||
|  | ||||
|     # Grab the full dataset to warm-start prototypes | ||||
|     x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train)))) | ||||
|     x = x.view(len(mnist_train), -1) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         input_dim=28 * 28, | ||||
|         nclasses=10, | ||||
|         prototypes_per_class=1, | ||||
|         prototype_initializer="stratified_mean", | ||||
|         lr=args.lr, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = ImageGLVQ(hparams, data=[x, y]) | ||||
|  | ||||
|     # Model summary | ||||
|     print(model) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         gpus=args.gpus,  # change to use GPUs for training | ||||
|         max_epochs=args.epochs, | ||||
|         callbacks=[vis], | ||||
|         # accelerator="ddp_cpu",  # DEBUG-ONLY | ||||
|         # num_processes=2,  # DEBUG-ONLY | ||||
|     ) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader, test_loader) | ||||
							
								
								
									
										51
									
								
								examples/glvq_spiral.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								examples/glvq_spiral.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,51 @@ | ||||
| """GLVQ example using the spiral dataset.""" | ||||
|  | ||||
| import prototorch as pt | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
|  | ||||
|  | ||||
| class StopOnNaN(pl.Callback): | ||||
|     def __init__(self, param): | ||||
|         super().__init__() | ||||
|         self.param = param | ||||
|  | ||||
|     def on_epoch_end(self, trainer, pl_module, logs={}): | ||||
|         if torch.isnan(self.param).any(): | ||||
|             raise ValueError("NaN encountered. Stopping.") | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     train_ds = pt.datasets.Spiral(n_samples=600, noise=0.6) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = torch.utils.data.DataLoader(train_ds, | ||||
|                                                num_workers=0, | ||||
|                                                batch_size=256) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         nclasses=2, | ||||
|         prototypes_per_class=20, | ||||
|         prototype_initializer=pt.components.SSI(train_ds, noise=1e-7), | ||||
|         transfer_function="sigmoid_beta", | ||||
|         transfer_beta=10.0, | ||||
|         lr=0.01, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = pt.models.GLVQ(hparams) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = pt.models.VisGLVQ2D(train_ds, show_last_only=True, block=True) | ||||
|     snan = StopOnNaN(model.proto_layer.components) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=200, | ||||
|         callbacks=[vis, snan], | ||||
|     ) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
							
								
								
									
										37
									
								
								examples/gmlvq_iris.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								examples/gmlvq_iris.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,37 @@ | ||||
| """GMLVQ example using all four dimensions of the Iris dataset.""" | ||||
|  | ||||
| import prototorch as pt | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     from sklearn.datasets import load_iris | ||||
|     x_train, y_train = load_iris(return_X_y=True) | ||||
|     train_ds = pt.datasets.NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = torch.utils.data.DataLoader(train_ds, | ||||
|                                                num_workers=0, | ||||
|                                                batch_size=150) | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         nclasses=3, | ||||
|         prototypes_per_class=1, | ||||
|         input_dim=x_train.shape[1], | ||||
|         latent_dim=x_train.shape[1], | ||||
|         prototype_initializer=pt.components.SMI(train_ds), | ||||
|         lr=0.01, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = pt.models.GMLVQ(hparams) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer(max_epochs=100) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
|  | ||||
|     # Display the Lambda matrix | ||||
|     model.show_lambda() | ||||
							
								
								
									
										45
									
								
								examples/liramlvq_tecator.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										45
									
								
								examples/liramlvq_tecator.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,45 @@ | ||||
| """Limited Rank Matrix LVQ example using the Tecator dataset.""" | ||||
|  | ||||
| import prototorch as pt | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     train_ds = pt.datasets.Tecator(root="~/datasets/", train=True) | ||||
|  | ||||
|     # Reproducibility | ||||
|     pl.utilities.seed.seed_everything(seed=42) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = torch.utils.data.DataLoader(train_ds, | ||||
|                                                num_workers=0, | ||||
|                                                batch_size=32) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         nclasses=2, | ||||
|         prototypes_per_class=2, | ||||
|         input_dim=100, | ||||
|         latent_dim=2, | ||||
|         prototype_initializer=pt.components.SMI(train_ds), | ||||
|         lr=0.001, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = pt.models.GMLVQ(hparams) | ||||
|  | ||||
|     # Model summary | ||||
|     print(model) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1) | ||||
|  | ||||
|     # Namespace hook for the visualization to work | ||||
|     model.backbone = model.omega_layer | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer(max_epochs=200, callbacks=[vis]) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
| @@ -1,51 +1,40 @@ | ||||
| """Neural Gas example using the Iris dataset.""" | ||||
|  | ||||
| import numpy as np | ||||
| import prototorch as pt | ||||
| import pytorch_lightning as pl | ||||
| from matplotlib import pyplot as plt | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.callbacks.visualization import VisNG2D | ||||
| from prototorch.models.neural_gas import NeuralGas | ||||
| from sklearn.datasets import load_iris | ||||
| from sklearn.preprocessing import StandardScaler | ||||
| from torch.utils.data import DataLoader | ||||
| import torch | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     # Prepare and pre-process the dataset | ||||
|     from sklearn.datasets import load_iris | ||||
|     from sklearn.preprocessing import StandardScaler | ||||
|     x_train, y_train = load_iris(return_X_y=True) | ||||
|     x_train = x_train[:, [0, 2]] | ||||
|     scaler = StandardScaler() | ||||
|     scaler.fit(x_train) | ||||
|     x_train = scaler.transform(x_train) | ||||
|  | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|     train_ds = pt.datasets.NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|     train_loader = torch.utils.data.DataLoader(train_ds, | ||||
|                                                num_workers=0, | ||||
|                                                batch_size=150) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         input_dim=x_train.shape[1], | ||||
|         num_prototypes=30, | ||||
|         lr=0.01, | ||||
|     ) | ||||
|     hparams = dict(num_prototypes=30, lr=0.03) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = NeuralGas(hparams) | ||||
|     model = pt.models.NeuralGas(hparams) | ||||
|  | ||||
|     # Model summary | ||||
|     print(model) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = VisNG2D(x_train, y_train) | ||||
|     vis = pt.models.VisNG2D(data=train_ds) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer( | ||||
|         max_epochs=100, | ||||
|         callbacks=[ | ||||
|             vis, | ||||
|         ], | ||||
|     ) | ||||
|     trainer = pl.Trainer(max_epochs=200, callbacks=[vis]) | ||||
|  | ||||
|     # Training loop | ||||
|     trainer.fit(model, train_loader) | ||||
|   | ||||
| @@ -1,17 +1,12 @@ | ||||
| """Siamese GLVQ example using all four dimensions of the Iris dataset.""" | ||||
|  | ||||
| import prototorch as pt | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from prototorch.components import (StratifiedMeanInitializer, | ||||
|                                    StratifiedSelectionInitializer) | ||||
| from prototorch.datasets.abstract import NumpyDataset | ||||
| from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D | ||||
| from prototorch.models.glvq import SiameseGLVQ | ||||
| from sklearn.datasets import load_iris | ||||
| from torch.utils.data import DataLoader | ||||
|  | ||||
|  | ||||
| class Backbone(torch.nn.Module): | ||||
|     """Two fully connected layers with ReLU activation.""" | ||||
|     def __init__(self, input_size=4, hidden_size=10, latent_size=2): | ||||
|         super().__init__() | ||||
|         self.input_size = input_size | ||||
| @@ -22,28 +17,36 @@ class Backbone(torch.nn.Module): | ||||
|         self.relu = torch.nn.ReLU() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.relu(self.dense2(self.relu(self.dense1(x)))) | ||||
|         x = self.relu(self.dense1(x)) | ||||
|         out = self.relu(self.dense2(x)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # Dataset | ||||
|     from sklearn.datasets import load_iris | ||||
|     x_train, y_train = load_iris(return_X_y=True) | ||||
|     train_ds = NumpyDataset(x_train, y_train) | ||||
|     train_ds = pt.datasets.NumpyDataset(x_train, y_train) | ||||
|  | ||||
|     # Reproducibility | ||||
|     pl.utilities.seed.seed_everything(seed=2) | ||||
|  | ||||
|     # Dataloaders | ||||
|     train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) | ||||
|     train_loader = torch.utils.data.DataLoader(train_ds, | ||||
|                                                num_workers=0, | ||||
|                                                batch_size=150) | ||||
|  | ||||
|     # Hyperparameters | ||||
|     hparams = dict( | ||||
|         nclasses=3, | ||||
|         prototypes_per_class=1, | ||||
|         prototype_initializer=StratifiedMeanInitializer( | ||||
|             torch.Tensor(x_train), torch.Tensor(y_train)), | ||||
|         lr=0.01, | ||||
|         prototypes_per_class=2, | ||||
|         prototype_initializer=pt.components.SMI((x_train, y_train)), | ||||
|         proto_lr=0.001, | ||||
|         bb_lr=0.001, | ||||
|     ) | ||||
|  | ||||
|     # Initialize the model | ||||
|     model = SiameseGLVQ( | ||||
|     model = pt.models.SiameseGLVQ( | ||||
|         hparams, | ||||
|         backbone_module=Backbone, | ||||
|     ) | ||||
| @@ -52,7 +55,7 @@ if __name__ == "__main__": | ||||
|     print(model) | ||||
|  | ||||
|     # Callbacks | ||||
|     vis = VisSiameseGLVQ2D(x_train, y_train) | ||||
|     vis = pt.models.VisSiameseGLVQ2D(data=(x_train, y_train), border=0.1) | ||||
|  | ||||
|     # Setup trainer | ||||
|     trainer = pl.Trainer(max_epochs=100, callbacks=[vis]) | ||||
|   | ||||
| @@ -1,5 +1,10 @@ | ||||
| from importlib.metadata import PackageNotFoundError, version | ||||
|  | ||||
| from .cbc import CBC | ||||
| from .glvq import GLVQ, GMLVQ, GRLVQ, LVQMLN, ImageGLVQ, SiameseGLVQ | ||||
| from .neural_gas import NeuralGas | ||||
| from .vis import * | ||||
|  | ||||
| VERSION_FALLBACK = "uninstalled_version" | ||||
| try: | ||||
|     __version__ = version(__name__.replace(".", "-")) | ||||
|   | ||||
							
								
								
									
										23
									
								
								prototorch/models/abstract.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								prototorch/models/abstract.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,23 @@ | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from torch.optim.lr_scheduler import ExponentialLR | ||||
|  | ||||
|  | ||||
| class AbstractLightningModel(pl.LightningModule): | ||||
|     def configure_optimizers(self): | ||||
|         optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr) | ||||
|         scheduler = ExponentialLR(optimizer, | ||||
|                                   gamma=0.99, | ||||
|                                   last_epoch=-1, | ||||
|                                   verbose=False) | ||||
|         sch = { | ||||
|             "scheduler": scheduler, | ||||
|             "interval": "step", | ||||
|         }  # called after each training step | ||||
|         return [optimizer], [sch] | ||||
|  | ||||
|  | ||||
| class AbstractPrototypeModel(AbstractLightningModel): | ||||
|     @property | ||||
|     def prototypes(self): | ||||
|         return self.proto_layer.components.detach().cpu() | ||||
| @@ -1,10 +1,9 @@ | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| import torchmetrics | ||||
|  | ||||
| from prototorch.components.components import Components | ||||
| from prototorch.functions.distances import euclidean_distance | ||||
| from prototorch.functions.similarities import cosine_similarity | ||||
| from prototorch.modules.prototypes import Prototypes1D | ||||
|  | ||||
|  | ||||
| def rescaled_cosine_similarity(x, y): | ||||
| @@ -93,12 +92,8 @@ class CBC(pl.LightningModule): | ||||
|         super().__init__() | ||||
|         self.save_hyperparameters(hparams) | ||||
|         self.margin = margin | ||||
|         self.proto_layer = Prototypes1D( | ||||
|             input_dim=self.hparams.input_dim, | ||||
|             nclasses=self.hparams.nclasses, | ||||
|             prototypes_per_class=self.hparams.prototypes_per_class, | ||||
|             prototype_initializer=self.hparams.prototype_initializer, | ||||
|             **kwargs) | ||||
|         self.component_layer = Components(self.hparams.num_components, | ||||
|                                           self.hparams.component_initializer) | ||||
|         # self.similarity = CosineSimilarity() | ||||
|         self.similarity = similarity | ||||
|         self.backbone = backbone_class() | ||||
| @@ -110,7 +105,7 @@ class CBC(pl.LightningModule): | ||||
|  | ||||
|     @property | ||||
|     def components(self): | ||||
|         return self.proto_layer.prototypes.detach().cpu() | ||||
|         return self.component_layer.components.detach().cpu() | ||||
|  | ||||
|     @property | ||||
|     def reasonings(self): | ||||
| @@ -126,7 +121,7 @@ class CBC(pl.LightningModule): | ||||
|  | ||||
|     def forward(self, x): | ||||
|         self.sync_backbones() | ||||
|         protos, _ = self.proto_layer() | ||||
|         protos = self.component_layer() | ||||
|  | ||||
|         latent_x = self.backbone(x) | ||||
|         latent_protos = self.backbone_dependent(protos) | ||||
| @@ -167,4 +162,4 @@ class ImageCBC(CBC): | ||||
|     """ | ||||
|     def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): | ||||
|         # super().on_train_batch_end(outputs, batch, batch_idx, dataloader_idx) | ||||
|         self.proto_layer.prototypes.data.clamp_(0.0, 1.0) | ||||
|         self.component_layer.prototypes.data.clamp_(0.0, 1.0) | ||||
|   | ||||
| @@ -1,11 +1,11 @@ | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| import torchmetrics | ||||
| from prototorch.components import LabeledComponents | ||||
| from prototorch.functions.activations import get_activation | ||||
| from prototorch.functions.competitions import wtac | ||||
| from prototorch.functions.distances import euclidean_distance | ||||
| from prototorch.functions.distances import (euclidean_distance, omega_distance, | ||||
|                                             squared_euclidean_distance) | ||||
| from prototorch.functions.losses import glvq_loss | ||||
| from prototorch.modules.prototypes import Prototypes1D | ||||
|  | ||||
| from .abstract import AbstractPrototypeModel | ||||
|  | ||||
| @@ -19,50 +19,53 @@ class GLVQ(AbstractPrototypeModel): | ||||
|  | ||||
|         # Default Values | ||||
|         self.hparams.setdefault("distance", euclidean_distance) | ||||
|         self.hparams.setdefault("optimizer", torch.optim.Adam) | ||||
|         self.hparams.setdefault("transfer_function", "identity") | ||||
|         self.hparams.setdefault("transfer_beta", 10.0) | ||||
|  | ||||
|         self.proto_layer = LabeledComponents( | ||||
|             labels=(self.hparams.nclasses, self.hparams.prototypes_per_class), | ||||
|             initializer=self.hparams.prototype_initializer) | ||||
|  | ||||
|         self.transfer_function = get_activation(self.hparams.transfer_function) | ||||
|         self.train_acc = torchmetrics.Accuracy() | ||||
|  | ||||
|     @property | ||||
|     def prototype_labels(self): | ||||
|         return self.proto_layer.component_labels.detach().numpy() | ||||
|         return self.proto_layer.component_labels.detach().cpu() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         protos, _ = self.proto_layer() | ||||
|         dis = self.hparams.distance(x, protos) | ||||
|         return dis | ||||
|  | ||||
|     def training_step(self, train_batch, batch_idx): | ||||
|     def training_step(self, train_batch, batch_idx, optimizer_idx=None): | ||||
|         x, y = train_batch | ||||
|         x = x.view(x.size(0), -1) | ||||
|         x = x.view(x.size(0), -1)  # flatten | ||||
|         dis = self(x) | ||||
|         plabels = self.proto_layer.component_labels | ||||
|         mu = glvq_loss(dis, y, prototype_labels=plabels) | ||||
|         loss = mu.sum(dim=0) | ||||
|         self.log("train_loss", loss) | ||||
|         batch_loss = self.transfer_function(mu, | ||||
|                                             beta=self.hparams.transfer_beta) | ||||
|         loss = batch_loss.sum(dim=0) | ||||
|  | ||||
|         # Compute training accuracy | ||||
|         with torch.no_grad(): | ||||
|             preds = wtac(dis, plabels) | ||||
|         # self.train_acc.update(preds.int(), y.int()) | ||||
|         self.train_acc( | ||||
|             preds.int(), | ||||
|             y.int())  # FloatTensors are assumed to be class probabilities | ||||
|         self.log( | ||||
|             "acc", | ||||
|  | ||||
|         self.train_acc(preds.int(), y.int()) | ||||
|         # `.int()` because FloatTensors are assumed to be class probabilities | ||||
|  | ||||
|         # Logging | ||||
|         self.log("train_loss", loss) | ||||
|         self.log("acc", | ||||
|                  self.train_acc, | ||||
|                  on_step=False, | ||||
|                  on_epoch=True, | ||||
|                  prog_bar=True, | ||||
|             logger=True, | ||||
|         ) | ||||
|         return loss | ||||
|                  logger=True) | ||||
|  | ||||
|     # def training_epoch_end(self, outs): | ||||
|     #     # Calling `self.train_acc.compute()` is | ||||
|     #     # automatically done by setting `on_epoch=True` when logging in `self.training_step(...)` | ||||
|     #     self.log("train_acc_epoch", self.train_acc.compute()) | ||||
|         return loss | ||||
|  | ||||
|     def predict(self, x): | ||||
|         # model.eval()  # ?! | ||||
| @@ -76,8 +79,9 @@ class GLVQ(AbstractPrototypeModel): | ||||
| class ImageGLVQ(GLVQ): | ||||
|     """GLVQ for training on image data. | ||||
|  | ||||
|     GLVQ model that constrains the prototypes to the range [0, 1] by | ||||
|     clamping after updates. | ||||
|     GLVQ model that constrains the prototypes to the range [0, 1] by clamping | ||||
|     after updates. | ||||
|  | ||||
|     """ | ||||
|     def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): | ||||
|         self.proto_layer.components.data.clamp_(0.0, 1.0) | ||||
| @@ -89,6 +93,155 @@ class SiameseGLVQ(GLVQ): | ||||
|     GLVQ model that applies an arbitrary transformation on the inputs and the | ||||
|     prototypes before computing the distances between them. The weights in the | ||||
|     transformation pipeline are only learned from the inputs. | ||||
|  | ||||
|     """ | ||||
|     def __init__(self, | ||||
|                  hparams, | ||||
|                  backbone_module=torch.nn.Identity, | ||||
|                  backbone_params={}, | ||||
|                  sync=True, | ||||
|                  **kwargs): | ||||
|         super().__init__(hparams, **kwargs) | ||||
|         self.backbone = backbone_module(**backbone_params) | ||||
|         self.backbone_dependent = backbone_module( | ||||
|             **backbone_params).requires_grad_(False) | ||||
|         self.sync = sync | ||||
|  | ||||
|     def sync_backbones(self): | ||||
|         master_state = self.backbone.state_dict() | ||||
|         self.backbone_dependent.load_state_dict(master_state, strict=True) | ||||
|  | ||||
|     def configure_optimizers(self): | ||||
|         optim = self.hparams.optimizer | ||||
|         proto_opt = optim(self.proto_layer.parameters(), | ||||
|                           lr=self.hparams.proto_lr) | ||||
|         if list(self.backbone.parameters()): | ||||
|             # only add an optimizer is the backbone has trainable parameters | ||||
|             # otherwise, the next line fails | ||||
|             bb_opt = optim(self.backbone.parameters(), lr=self.hparams.bb_lr) | ||||
|             return proto_opt, bb_opt | ||||
|         else: | ||||
|             return proto_opt | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.sync: | ||||
|             self.sync_backbones() | ||||
|         protos, _ = self.proto_layer() | ||||
|         latent_x = self.backbone(x) | ||||
|         latent_protos = self.backbone_dependent(protos) | ||||
|         dis = euclidean_distance(latent_x, latent_protos) | ||||
|         return dis | ||||
|  | ||||
|     def predict_latent(self, x): | ||||
|         """Predict `x` assuming it is already embedded in the latent space. | ||||
|  | ||||
|         Only the prototypes are embedded in the latent space using the | ||||
|         backbone. | ||||
|  | ||||
|         """ | ||||
|         # model.eval()  # ?! | ||||
|         with torch.no_grad(): | ||||
|             protos, plabels = self.proto_layer() | ||||
|             latent_protos = self.backbone_dependent(protos) | ||||
|             d = euclidean_distance(x, latent_protos) | ||||
|             y_pred = wtac(d, plabels) | ||||
|         return y_pred.numpy() | ||||
|  | ||||
|  | ||||
| class GRLVQ(GLVQ): | ||||
|     """Generalized Relevance Learning Vector Quantization.""" | ||||
|     def __init__(self, hparams, **kwargs): | ||||
|         super().__init__(hparams, **kwargs) | ||||
|         self.relevances = torch.nn.parameter.Parameter( | ||||
|             torch.ones(self.hparams.input_dim)) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         protos, _ = self.proto_layer() | ||||
|         dis = omega_distance(x, protos, torch.diag(self.relevances)) | ||||
|         return dis | ||||
|  | ||||
|     def backbone(self, x): | ||||
|         return x @ torch.diag(self.relevances) | ||||
|  | ||||
|     @property | ||||
|     def relevance_profile(self): | ||||
|         return self.relevances.detach().cpu() | ||||
|  | ||||
|     def predict_latent(self, x): | ||||
|         """Predict `x` assuming it is already embedded in the latent space. | ||||
|  | ||||
|         Only the prototypes are embedded in the latent space using the | ||||
|         backbone. | ||||
|  | ||||
|         """ | ||||
|         # model.eval()  # ?! | ||||
|         with torch.no_grad(): | ||||
|             protos, plabels = self.proto_layer() | ||||
|             latent_protos = protos @ torch.diag(self.relevances) | ||||
|             d = squared_euclidean_distance(x, latent_protos) | ||||
|             y_pred = wtac(d, plabels) | ||||
|         return y_pred.numpy() | ||||
|  | ||||
|  | ||||
| class GMLVQ(GLVQ): | ||||
|     """Generalized Matrix Learning Vector Quantization.""" | ||||
|     def __init__(self, hparams, **kwargs): | ||||
|         super().__init__(hparams, **kwargs) | ||||
|         self.omega_layer = torch.nn.Linear(self.hparams.input_dim, | ||||
|                                            self.hparams.latent_dim, | ||||
|                                            bias=False) | ||||
|  | ||||
|     @property | ||||
|     def omega_matrix(self): | ||||
|         return self.omega_layer.weight.detach().cpu() | ||||
|  | ||||
|     @property | ||||
|     def lambda_matrix(self): | ||||
|         omega = self.omega_layer.weight | ||||
|         lam = omega @ omega.T | ||||
|         return lam.detach().cpu() | ||||
|  | ||||
|     def show_lambda(self): | ||||
|         import matplotlib.pyplot as plt | ||||
|         title = "Lambda matrix" | ||||
|         plt.figure(title) | ||||
|         plt.title(title) | ||||
|         plt.imshow(self.lambda_matrix, cmap="gray") | ||||
|         plt.axis("off") | ||||
|         plt.colorbar() | ||||
|         plt.show(block=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         protos, _ = self.proto_layer() | ||||
|         latent_x = self.omega_layer(x) | ||||
|         latent_protos = self.omega_layer(protos) | ||||
|         dis = squared_euclidean_distance(latent_x, latent_protos) | ||||
|         return dis | ||||
|  | ||||
|     def predict_latent(self, x): | ||||
|         """Predict `x` assuming it is already embedded in the latent space. | ||||
|  | ||||
|         Only the prototypes are embedded in the latent space using the | ||||
|         backbone. | ||||
|  | ||||
|         """ | ||||
|         # model.eval()  # ?! | ||||
|         with torch.no_grad(): | ||||
|             protos, plabels = self.proto_layer() | ||||
|             latent_protos = self.omega_layer(protos) | ||||
|             d = squared_euclidean_distance(x, latent_protos) | ||||
|             y_pred = wtac(d, plabels) | ||||
|         return y_pred.numpy() | ||||
|  | ||||
|  | ||||
| class LVQMLN(GLVQ): | ||||
|     """Learning Vector Quantization Multi-Layer Network. | ||||
|  | ||||
|     GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT | ||||
|     on the prototypes before computing the distances between them. This of | ||||
|     course, means that the prototypes no longer live the input space, but | ||||
|     rather in the embedding space. | ||||
|  | ||||
|     """ | ||||
|     def __init__(self, | ||||
|                  hparams, | ||||
| @@ -97,28 +250,17 @@ class SiameseGLVQ(GLVQ): | ||||
|                  **kwargs): | ||||
|         super().__init__(hparams, **kwargs) | ||||
|         self.backbone = backbone_module(**backbone_params) | ||||
|         self.backbone_dependent = backbone_module( | ||||
|             **backbone_params).requires_grad_(False) | ||||
|  | ||||
|     def sync_backbones(self): | ||||
|         master_state = self.backbone.state_dict() | ||||
|         self.backbone_dependent.load_state_dict(master_state, strict=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         self.sync_backbones() | ||||
|         protos, _ = self.proto_layer() | ||||
|  | ||||
|         latent_protos, _ = self.proto_layer() | ||||
|         latent_x = self.backbone(x) | ||||
|         latent_protos = self.backbone_dependent(protos) | ||||
|  | ||||
|         dis = euclidean_distance(latent_x, latent_protos) | ||||
|         return dis | ||||
|  | ||||
|     def predict_latent(self, x): | ||||
|         # model.eval()  # ?! | ||||
|         """Predict `x` assuming it is already embedded in the latent space.""" | ||||
|         with torch.no_grad(): | ||||
|             protos, plabels = self.proto_layer() | ||||
|             latent_protos = self.backbone_dependent(protos) | ||||
|             latent_protos, plabels = self.proto_layer() | ||||
|             d = euclidean_distance(x, latent_protos) | ||||
|             y_pred = wtac(d, plabels) | ||||
|         return y_pred.numpy() | ||||
|   | ||||
| @@ -1,9 +1,7 @@ | ||||
| import pytorch_lightning as pl | ||||
| import torch | ||||
| from prototorch.components import Components | ||||
| from prototorch.components import initializers as cinit | ||||
| from prototorch.functions.distances import euclidean_distance | ||||
| from prototorch.modules import Prototypes1D | ||||
| from prototorch.modules.losses import NeuralGasEnergy | ||||
|  | ||||
| from .abstract import AbstractPrototypeModel | ||||
|   | ||||
| @@ -9,6 +9,7 @@ from prototorch.utils.celluloid import Camera | ||||
| from prototorch.utils.colors import color_scheme | ||||
| from prototorch.utils.utils import (gif_from_dir, make_directory, | ||||
|                                     prettify_string) | ||||
| from torch.utils.data import DataLoader, Dataset | ||||
| 
 | ||||
| 
 | ||||
| class VisWeights(pl.Callback): | ||||
| @@ -261,29 +262,82 @@ class VisPointProtos(VisWeights): | ||||
|         self._show_and_save(epoch) | ||||
| 
 | ||||
| 
 | ||||
| class VisGLVQ2D(pl.Callback): | ||||
| class Vis2DAbstract(pl.Callback): | ||||
|     def __init__(self, | ||||
|                  x_train, | ||||
|                  y_train, | ||||
|                  data, | ||||
|                  title="Prototype Visualization", | ||||
|                  cmap="viridis"): | ||||
|                  cmap="viridis", | ||||
|                  border=1, | ||||
|                  resolution=50, | ||||
|                  tensorboard=False, | ||||
|                  show_last_only=False, | ||||
|                  pause_time=0.1, | ||||
|                  block=False): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
| 
 | ||||
|         if isinstance(data, Dataset): | ||||
|             x, y = next(iter(DataLoader(data, batch_size=len(data)))) | ||||
|             x = x.view(len(data), -1)  # flatten | ||||
|         else: | ||||
|             x, y = data | ||||
|         self.x_train = x | ||||
|         self.y_train = y | ||||
| 
 | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
|         self.border = border | ||||
|         self.resolution = resolution | ||||
|         self.tensorboard = tensorboard | ||||
|         self.show_last_only = show_last_only | ||||
|         self.pause_time = pause_time | ||||
|         self.block = block | ||||
| 
 | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         protos = pl_module.prototypes | ||||
|         plabels = pl_module.prototype_labels | ||||
|         x_train, y_train = self.x_train, self.y_train | ||||
|     def setup_ax(self, xlabel=None, ylabel=None): | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.axis("off") | ||||
|         if xlabel: | ||||
|             ax.set_xlabel("Data dimension 1") | ||||
|         if ylabel: | ||||
|             ax.set_ylabel("Data dimension 2") | ||||
|         return ax | ||||
| 
 | ||||
|     def get_mesh_input(self, x): | ||||
|         x_min, x_max = x[:, 0].min() - self.border, x[:, 0].max() + self.border | ||||
|         y_min, y_max = x[:, 1].min() - self.border, x[:, 1].max() + self.border | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / self.resolution), | ||||
|                              np.arange(y_min, y_max, 1 / self.resolution)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         return mesh_input, xx, yy | ||||
| 
 | ||||
|     def add_to_tensorboard(self, trainer, pl_module): | ||||
|         tb = pl_module.logger.experiment | ||||
|         tb.add_figure(tag=f"{self.title}", | ||||
|                       figure=self.fig, | ||||
|                       global_step=trainer.current_epoch, | ||||
|                       close=False) | ||||
| 
 | ||||
|     def log_and_display(self, trainer, pl_module): | ||||
|         if self.tensorboard: | ||||
|             self.add_to_tensorboard(trainer, pl_module) | ||||
|         if not self.block: | ||||
|             plt.pause(self.pause_time) | ||||
|         else: | ||||
|             plt.show(block=True) | ||||
| 
 | ||||
| 
 | ||||
| class VisGLVQ2D(Vis2DAbstract): | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         if self.show_last_only: | ||||
|             if trainer.current_epoch != trainer.max_epochs - 1: | ||||
|                 return | ||||
|         protos = pl_module.prototypes | ||||
|         plabels = pl_module.prototype_labels | ||||
|         x_train, y_train = self.x_train, self.y_train | ||||
|         ax = self.setup_ax(xlabel="Data dimension 1", | ||||
|                            ylabel="Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
| @@ -295,43 +349,25 @@ class VisGLVQ2D(pl.Callback): | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | ||||
|         y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), | ||||
|                              np.arange(y_min, y_max, 1 / 50)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         mesh_input, xx, yy = self.get_mesh_input(x) | ||||
|         y_pred = pl_module.predict(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
| 
 | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
|         plt.pause(0.1) | ||||
|         # ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         # ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
| 
 | ||||
|         self.log_and_display(trainer, pl_module) | ||||
| 
 | ||||
| 
 | ||||
| class VisSiameseGLVQ2D(pl.Callback): | ||||
|     def __init__(self, | ||||
|                  x_train, | ||||
|                  y_train, | ||||
|                  title="Prototype Visualization", | ||||
|                  cmap="viridis"): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
| 
 | ||||
| class VisSiameseGLVQ2D(Vis2DAbstract): | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         protos = pl_module.prototypes | ||||
|         plabels = pl_module.prototype_labels | ||||
|         x_train, y_train = self.x_train, self.y_train | ||||
|         x_train = pl_module.backbone(torch.Tensor(x_train)).detach() | ||||
|         protos = pl_module.backbone(torch.Tensor(protos)).detach() | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.axis("off") | ||||
|         ax = self.setup_ax() | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
| @@ -343,54 +379,54 @@ class VisSiameseGLVQ2D(pl.Callback): | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 | ||||
|         y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 | ||||
|         xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), | ||||
|                              np.arange(y_min, y_max, 1 / 50)) | ||||
|         mesh_input = np.c_[xx.ravel(), yy.ravel()] | ||||
|         mesh_input, xx, yy = self.get_mesh_input(x) | ||||
|         y_pred = pl_module.predict_latent(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
| 
 | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
|         tb = pl_module.logger.experiment | ||||
|         tb.add_figure( | ||||
|             tag=f"{self.title}", | ||||
|             figure=self.fig, | ||||
|             global_step=trainer.current_epoch, | ||||
|             close=False, | ||||
|         ) | ||||
|         plt.pause(0.1) | ||||
|         # ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         # ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
| 
 | ||||
|         self.log_and_display(trainer, pl_module) | ||||
| 
 | ||||
| 
 | ||||
| class VisNG2D(pl.Callback): | ||||
|     def __init__(self, | ||||
|                  x_train, | ||||
|                  y_train, | ||||
|                  title="Neural Gas Visualization", | ||||
|                  cmap="viridis"): | ||||
|         super().__init__() | ||||
|         self.x_train = x_train | ||||
|         self.y_train = y_train | ||||
|         self.title = title | ||||
|         self.fig = plt.figure(self.title) | ||||
|         self.cmap = cmap | ||||
| 
 | ||||
| class VisCBC2D(Vis2DAbstract): | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         x_train, y_train = self.x_train, self.y_train | ||||
|         protos = pl_module.components | ||||
|         ax = self.setup_ax(xlabel="Data dimension 1", | ||||
|                            ylabel="Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
|             protos[:, 1], | ||||
|             c="w", | ||||
|             cmap=self.cmap, | ||||
|             edgecolor="k", | ||||
|             marker="D", | ||||
|             s=50, | ||||
|         ) | ||||
|         x = np.vstack((x_train, protos)) | ||||
|         mesh_input, xx, yy = self.get_mesh_input(x) | ||||
|         y_pred = pl_module.predict(torch.Tensor(mesh_input)) | ||||
|         y_pred = y_pred.reshape(xx.shape) | ||||
| 
 | ||||
|         ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) | ||||
|         # ax.set_xlim(left=x_min + 0, right=x_max - 0) | ||||
|         # ax.set_ylim(bottom=y_min + 0, top=y_max - 0) | ||||
| 
 | ||||
|         self.log_and_display(trainer, pl_module) | ||||
| 
 | ||||
| 
 | ||||
| class VisNG2D(Vis2DAbstract): | ||||
|     def on_epoch_end(self, trainer, pl_module): | ||||
|         x_train, y_train = self.x_train, self.y_train | ||||
|         protos = pl_module.prototypes | ||||
|         cmat = pl_module.topology_layer.cmat.cpu().numpy() | ||||
| 
 | ||||
|         # Visualize the data and the prototypes | ||||
|         ax = self.fig.gca() | ||||
|         ax.cla() | ||||
|         ax.set_title(self.title) | ||||
|         ax.set_xlabel("Data dimension 1") | ||||
|         ax.set_ylabel("Data dimension 2") | ||||
|         ax.scatter(self.x_train[:, 0], | ||||
|                    self.x_train[:, 1], | ||||
|                    c=self.y_train, | ||||
|                    edgecolor="k") | ||||
|         ax = self.setup_ax(xlabel="Data dimension 1", | ||||
|                            ylabel="Data dimension 2") | ||||
|         ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") | ||||
|         ax.scatter( | ||||
|             protos[:, 0], | ||||
|             protos[:, 1], | ||||
| @@ -410,4 +446,4 @@ class VisNG2D(pl.Callback): | ||||
|                         "k-", | ||||
|                     ) | ||||
| 
 | ||||
|         plt.pause(0.01) | ||||
|         self.log_and_display(trainer, pl_module) | ||||
		Reference in New Issue
	
	Block a user