commit
84257bfb0d
52
README.md
52
README.md
@ -5,9 +5,15 @@ PyTorch-Lightning.
|
||||
|
||||
## Installation
|
||||
|
||||
To install this plugin, simple install
|
||||
[ProtoTorch](https://github.com/si-cim/prototorch) first by following the
|
||||
installation instructions there and then install this plugin by doing:
|
||||
To install this plugin, first install
|
||||
[ProtoTorch](https://github.com/si-cim/prototorch) with:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/si-cim/prototorch.git && cd prototorch
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
and then install the plugin itself with:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/si-cim/prototorch_models.git && cd prototorch_models
|
||||
@ -28,9 +34,14 @@ following:
|
||||
```sh
|
||||
export WORKON_HOME=~/pyenvs
|
||||
mkdir -p $WORKON_HOME
|
||||
source /usr/local/bin/virtualenvwrapper.sh # might be different
|
||||
# source ~/.local/bin/virtualenvwrapper.sh
|
||||
source /usr/local/bin/virtualenvwrapper.sh # location may vary
|
||||
mkvirtualenv pt
|
||||
```
|
||||
|
||||
Once you have a virtual environment setup, you can start install the `models`
|
||||
plugin with:
|
||||
|
||||
```sh
|
||||
workon pt
|
||||
git clone git@github.com:si-cim/prototorch_models.git
|
||||
cd prototorch_models
|
||||
@ -43,18 +54,31 @@ To assist in the development process, you may also find it useful to install
|
||||
|
||||
## Available models
|
||||
|
||||
- GLVQ
|
||||
- Generalized Learning Vector Quantization (GLVQ)
|
||||
- Generalized Matrix Learning Vector Quantization (GMLVQ)
|
||||
- Limited-Rank Matrix Learning Vector Quantization (LiRaMLVQ)
|
||||
- Siamese GLVQ
|
||||
- Neural Gas
|
||||
- Neural Gas (NG)
|
||||
|
||||
## Work in Progress
|
||||
- CBC
|
||||
|
||||
- Classification-By-Components Network (CBC)
|
||||
- Learning Vector Quantization Multi-Layer Network (LVQMLN)
|
||||
|
||||
## Planned models
|
||||
- GMLVQ
|
||||
|
||||
- Local-Matrix GMLVQ
|
||||
- Limited-Rank GMLVQ
|
||||
- GTLVQ
|
||||
- RSLVQ
|
||||
- PLVQ
|
||||
- LVQMLN
|
||||
- Generalized Tangent Learning Vector Quantization (GTLVQ)
|
||||
- Robust Soft Learning Vector Quantization (RSLVQ)
|
||||
- Probabilistic Learning Vector Quantization (PLVQ)
|
||||
- Self-Incremental Learning Vector Quantization (SILVQ)
|
||||
- K-Nearest Neighbors (KNN)
|
||||
- Learning Vector Quantization 1 (LVQ1)
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I update the plugin?
|
||||
|
||||
If you have already cloned and installed `prototorch` and the
|
||||
`prototorch_models` plugin with the `-e` flag via `pip`, all you have to do is
|
||||
navigate to those folders from your terminal and do `git pull` to update.
|
||||
|
@ -1,129 +0,0 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import make_circles
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisPointProtos
|
||||
from prototorch.models.cbc import CBC, euclidean_similarity
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(
|
||||
self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.prototype_model = prototype_model
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if self.prototype_model:
|
||||
protos = pl_module.prototypes
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
color = "k"
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = make_circles(n_samples=300,
|
||||
shuffle=True,
|
||||
noise=0.05,
|
||||
random_state=None,
|
||||
factor=0.5)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=len(np.unique(y_train)),
|
||||
prototypes_per_class=5,
|
||||
prototype_initializer="randn",
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = CBC(
|
||||
hparams,
|
||||
data=[x_train, y_train],
|
||||
similarity=euclidean_similarity,
|
||||
)
|
||||
|
||||
model = GLVQ(hparams, data=[x_train, y_train])
|
||||
|
||||
# Fix the component locations
|
||||
# model.proto_layer.requires_grad_(False)
|
||||
|
||||
# import sys
|
||||
# sys.exit()
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
dvis = VisPointProtos(
|
||||
data=(x_train, y_train),
|
||||
save=True,
|
||||
snap=False,
|
||||
voronoi=True,
|
||||
resolution=50,
|
||||
pause_time=0.1,
|
||||
make_gif=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=10,
|
||||
callbacks=[
|
||||
dvis,
|
||||
],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,112 +1,45 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
# protos = pl_module.prototypes
|
||||
protos = pl_module.components
|
||||
# plabels = pl_module.prototype_labels
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
# c=plabels,
|
||||
c="k",
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=3,
|
||||
prototypes_per_class=3,
|
||||
prototype_initializer="stratified_mean",
|
||||
num_components=5,
|
||||
component_initializer=pt.components.SSI(train_ds, noise=0.01),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = CBC(hparams, data=[x_train, y_train])
|
||||
|
||||
# Fix the component locations
|
||||
# model.proto_layer.requires_grad_(False)
|
||||
|
||||
# Pure-positive reasonings
|
||||
ncomps = 3
|
||||
nclasses = 3
|
||||
rmat = torch.stack(
|
||||
[0.9 * torch.eye(ncomps),
|
||||
torch.zeros(ncomps, nclasses)], dim=0)
|
||||
# model.reasoning_layer.load_state_dict({"reasoning_probabilities": rmat},
|
||||
# strict=True)
|
||||
|
||||
print(model.reasoning_layer.reasoning_probabilities)
|
||||
# import sys
|
||||
# sys.exit()
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
model = pt.models.CBC(hparams)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
dvis = pt.models.VisCBC2D(data=(x_train, y_train),
|
||||
title="CBC Iris Example")
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=100,
|
||||
max_epochs=200,
|
||||
callbacks=[
|
||||
vis,
|
||||
dvis,
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -1,128 +0,0 @@
|
||||
"""CBC example using the MNIST dataset.
|
||||
|
||||
This script also shows how to use Tensorboard for visualizing the prototypes.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torchvision
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
from prototorch.models.cbc import CBC, ImageCBC, euclidean_similarity
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
||||
super().__init__()
|
||||
self.to_shape = to_shape
|
||||
self.nrow = nrow
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module: ImageCBC):
|
||||
tb = pl_module.logger.experiment
|
||||
|
||||
# components
|
||||
components = pl_module.components
|
||||
components_img = components.reshape(self.to_shape)
|
||||
grid = torchvision.utils.make_grid(components_img, nrow=self.nrow)
|
||||
tb.add_image(
|
||||
tag="MNIST Components",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats="CHW",
|
||||
)
|
||||
# Reasonings
|
||||
reasonings = pl_module.reasonings
|
||||
tb.add_images(
|
||||
tag="MNIST Reasoning",
|
||||
img_tensor=reasonings,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats="NCHW",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Epochs to train.")
|
||||
parser.add_argument("--lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="Learning rate.")
|
||||
parser.add_argument("--batch_size",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Batch size.")
|
||||
parser.add_argument("--gpus",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of GPUs to use.")
|
||||
parser.add_argument("--ppc",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Prototypes-Per-Class.")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
mnist_train = MNIST(
|
||||
"./datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||
]),
|
||||
)
|
||||
mnist_test = MNIST(
|
||||
"./datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(mnist_train, batch_size=32)
|
||||
test_loader = DataLoader(mnist_test, batch_size=32)
|
||||
|
||||
# Grab the full dataset to warm-start prototypes
|
||||
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
|
||||
x = x.view(len(mnist_train), -1)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
nclasses=10,
|
||||
prototypes_per_class=args.ppc,
|
||||
prototype_initializer="randn",
|
||||
lr=0.01,
|
||||
similarity=euclidean_similarity,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = CBC(hparams, data=[x, y])
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
gpus=args.gpus, # change to use GPUs for training
|
||||
max_epochs=args.epochs,
|
||||
callbacks=[vis],
|
||||
track_grad_norm=2,
|
||||
# accelerator="ddp_cpu", # DEBUG-ONLY
|
||||
# num_processes=2, # DEBUG-ONLY
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader, test_loader)
|
@ -1,135 +0,0 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(
|
||||
self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.prototype_model = prototype_model
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if self.prototype_model:
|
||||
protos = pl_module.prototypes
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
color = "k"
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
def make_spirals(n_samples=500, noise=0.3):
|
||||
def get_samples(n, delta_t):
|
||||
points = []
|
||||
for i in range(n):
|
||||
r = i / n_samples * 5
|
||||
t = 1.75 * i / n * 2 * np.pi + delta_t
|
||||
x = r * np.sin(t) + np.random.rand(1) * noise
|
||||
y = r * np.cos(t) + np.random.rand(1) * noise
|
||||
points.append([x, y])
|
||||
return points
|
||||
|
||||
n = n_samples // 2
|
||||
positive = get_samples(n=n, delta_t=0)
|
||||
negative = get_samples(n=n, delta_t=np.pi)
|
||||
x = np.concatenate(
|
||||
[np.array(positive).reshape(n, -1),
|
||||
np.array(negative).reshape(n, -1)],
|
||||
axis=0)
|
||||
y = np.concatenate([np.zeros(n), np.ones(n)])
|
||||
return x, y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = make_spirals(n_samples=1000, noise=0.3)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=2,
|
||||
prototypes_per_class=40,
|
||||
prototype_initializer="stratified_random",
|
||||
lr=0.05,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model_class = CBC
|
||||
model = model_class(hparams, data=[x_train, y_train])
|
||||
|
||||
# Pure-positive reasonings
|
||||
new_reasoning = torch.zeros_like(
|
||||
model.reasoning_layer.reasoning_probabilities)
|
||||
for i, label in enumerate(model.proto_layer.prototype_labels):
|
||||
new_reasoning[0][0][i][int(label)] = 1.0
|
||||
|
||||
model.reasoning_layer.reasoning_probabilities.data = new_reasoning
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train,
|
||||
y_train,
|
||||
prototype_model=hasattr(model, "prototypes"))
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=500,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,146 +0,0 @@
|
||||
"""CBC example using the spirals dataset.
|
||||
|
||||
This example shows how to jump start a model by transferring weights from
|
||||
another more stable model.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.cbc import CBC
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(
|
||||
self,
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_model=True,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.prototype_model = prototype_model
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if self.prototype_model:
|
||||
protos = pl_module.prototypes
|
||||
color = pl_module.prototype_labels
|
||||
else:
|
||||
protos = pl_module.components
|
||||
color = "k"
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=color,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
def make_spirals(n_samples=500, noise=0.3):
|
||||
def get_samples(n, delta_t):
|
||||
points = []
|
||||
for i in range(n):
|
||||
r = i / n_samples * 5
|
||||
t = 1.75 * i / n * 2 * np.pi + delta_t
|
||||
x = r * np.sin(t) + np.random.rand(1) * noise
|
||||
y = r * np.cos(t) + np.random.rand(1) * noise
|
||||
points.append([x, y])
|
||||
return points
|
||||
|
||||
n = n_samples // 2
|
||||
positive = get_samples(n=n, delta_t=0)
|
||||
negative = get_samples(n=n, delta_t=np.pi)
|
||||
x = np.concatenate(
|
||||
[np.array(positive).reshape(n, -1),
|
||||
np.array(negative).reshape(n, -1)],
|
||||
axis=0)
|
||||
y = np.concatenate([np.zeros(n), np.ones(n)])
|
||||
return x, y
|
||||
|
||||
|
||||
def train(model, x_train, y_train, train_loader, epochs=100):
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train,
|
||||
y_train,
|
||||
prototype_model=hasattr(model, "prototypes"))
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=epochs,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
)
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = make_spirals(n_samples=1000, noise=0.3)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
nclasses=2,
|
||||
prototypes_per_class=40,
|
||||
prototype_initializer="stratified_random",
|
||||
lr=0.05,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
glvq_model = GLVQ(hparams, data=[x_train, y_train])
|
||||
cbc_model = CBC(hparams, data=[x_train, y_train])
|
||||
|
||||
# Train GLVQ
|
||||
train(glvq_model, x_train, y_train, train_loader, epochs=10)
|
||||
|
||||
# Transfer Prototypes
|
||||
cbc_model.proto_layer.load_state_dict(glvq_model.proto_layer.state_dict())
|
||||
# Pure-positive reasonings
|
||||
new_reasoning = torch.zeros_like(
|
||||
cbc_model.reasoning_layer.reasoning_probabilities)
|
||||
for i, label in enumerate(cbc_model.proto_layer.prototype_labels):
|
||||
new_reasoning[0][0][i][int(label)] = 1.0
|
||||
new_reasoning[1][0][i][1 - int(label)] = 1.0
|
||||
|
||||
cbc_model.reasoning_layer.reasoning_probabilities.data = new_reasoning
|
||||
|
||||
# Train CBC
|
||||
train(cbc_model, x_train, y_train, train_loader, epochs=50)
|
@ -1,131 +1,40 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.glvq import GLVQ
|
||||
|
||||
|
||||
class GLVQIris(GLVQ):
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = argparse.ArgumentParser(parents=[parent_parser],
|
||||
add_help=False)
|
||||
parser.add_argument("--epochs", type=int, default=1)
|
||||
parser.add_argument("--lr", type=float, default=1e-1)
|
||||
parser.add_argument("--batch_size", type=int, default=150)
|
||||
parser.add_argument("--input_dim", type=int, default=2)
|
||||
parser.add_argument("--nclasses", type=int, default=3)
|
||||
parser.add_argument("--prototypes_per_class", type=int, default=3)
|
||||
parser.add_argument("--prototype_initializer",
|
||||
type=str,
|
||||
default="stratified_mean")
|
||||
return parser
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c=plabels,
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# For best-practices when using `argparse` with `pytorch_lightning`, see
|
||||
# https://pytorch-lightning.readthedocs.io/en/stable/common/hyperparameters.html
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Add model specific args
|
||||
parser = GLVQIris.add_model_specific_args(parser)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(x_train, y_train)
|
||||
|
||||
# Automatically add trainer-specific-args like `--gpus`, `--num_nodes` etc.
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
parser,
|
||||
max_epochs=10,
|
||||
callbacks=[
|
||||
vis,
|
||||
], # comment this line out to disable the visualization
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.01,
|
||||
)
|
||||
# trainer.tune(model)
|
||||
|
||||
# Initialize the model
|
||||
args = parser.parse_args()
|
||||
model = GLVQIris(args, data=[x_train, y_train])
|
||||
model = pt.models.GLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=50,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Save the model manually (use `pl.callbacks.ModelCheckpoint` to automate)
|
||||
ckpt = "glvq_iris.ckpt"
|
||||
trainer.save_checkpoint(ckpt)
|
||||
|
||||
# Load the checkpoint
|
||||
new_model = GLVQIris.load_from_checkpoint(checkpoint_path=ckpt)
|
||||
|
||||
print(new_model)
|
||||
|
||||
# Continue training
|
||||
trainer.fit(new_model, train_loader) # TODO See why this fails!
|
||||
|
@ -1,40 +0,0 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
||||
from prototorch.models.glvq import GLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=cinit.StratifiedMeanInitializer(
|
||||
torch.Tensor(x_train), torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(hparams, data=[x_train, y_train])
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=50,
|
||||
callbacks=[VisGLVQ2D(x_train, y_train)],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,118 +0,0 @@
|
||||
"""GLVQ example using the MNIST dataset.
|
||||
|
||||
This script also shows how to use Tensorboard for visualizing the prototypes.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torchvision
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
from prototorch.models.glvq import ImageGLVQ
|
||||
|
||||
|
||||
class VisualizationCallback(pl.Callback):
|
||||
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
||||
super().__init__()
|
||||
self.to_shape = to_shape
|
||||
self.nrow = nrow
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
protos = pl_module.proto_layer.prototypes.detach().cpu()
|
||||
protos_img = protos.reshape(self.to_shape)
|
||||
grid = torchvision.utils.make_grid(protos_img, nrow=self.nrow)
|
||||
# grid = grid.permute((1, 2, 0))
|
||||
tb = pl_module.logger.experiment
|
||||
tb.add_image(
|
||||
tag="MNIST Prototypes",
|
||||
img_tensor=grid,
|
||||
global_step=trainer.current_epoch,
|
||||
dataformats="CHW",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Epochs to train.")
|
||||
parser.add_argument("--lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="Learning rate.")
|
||||
parser.add_argument("--batch_size",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Batch size.")
|
||||
parser.add_argument("--gpus",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of GPUs to use.")
|
||||
parser.add_argument("--ppc",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Prototypes-Per-Class.")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
mnist_train = MNIST(
|
||||
"./datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||
]),
|
||||
)
|
||||
mnist_test = MNIST(
|
||||
"./datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307, ), (0.3081, ))
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(mnist_train, batch_size=1024)
|
||||
test_loader = DataLoader(mnist_test, batch_size=1024)
|
||||
|
||||
# Grab the full dataset to warm-start prototypes
|
||||
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
|
||||
x = x.view(len(mnist_train), -1)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
nclasses=10,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer="stratified_mean",
|
||||
lr=args.lr,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = ImageGLVQ(hparams, data=[x, y])
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
gpus=args.gpus, # change to use GPUs for training
|
||||
max_epochs=args.epochs,
|
||||
callbacks=[vis],
|
||||
# accelerator="ddp_cpu", # DEBUG-ONLY
|
||||
# num_processes=2, # DEBUG-ONLY
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader, test_loader)
|
51
examples/glvq_spiral.py
Normal file
51
examples/glvq_spiral.py
Normal file
@ -0,0 +1,51 @@
|
||||
"""GLVQ example using the spiral dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
|
||||
class StopOnNaN(pl.Callback):
|
||||
def __init__(self, param):
|
||||
super().__init__()
|
||||
self.param = param
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module, logs={}):
|
||||
if torch.isnan(self.param).any():
|
||||
raise ValueError("NaN encountered. Stopping.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Spiral(n_samples=600, noise=0.6)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=20,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=1e-7),
|
||||
transfer_function="sigmoid_beta",
|
||||
transfer_beta=10.0,
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GLVQ(hparams)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(train_ds, show_last_only=True, block=True)
|
||||
snan = StopOnNaN(model.proto_layer.components)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=200,
|
||||
callbacks=[vis, snan],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
37
examples/gmlvq_iris.py
Normal file
37
examples/gmlvq_iris.py
Normal file
@ -0,0 +1,37 @@
|
||||
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=1,
|
||||
input_dim=x_train.shape[1],
|
||||
latent_dim=x_train.shape[1],
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(hparams)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Display the Lambda matrix
|
||||
model.show_lambda()
|
45
examples/liramlvq_tecator.py
Normal file
45
examples/liramlvq_tecator.py
Normal file
@ -0,0 +1,45 @@
|
||||
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=2,
|
||||
prototypes_per_class=2,
|
||||
input_dim=100,
|
||||
latent_dim=2,
|
||||
prototype_initializer=pt.components.SMI(train_ds),
|
||||
lr=0.001,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.GMLVQ(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
|
||||
|
||||
# Namespace hook for the visualization to work
|
||||
model.backbone = model.omega_layer
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=200, callbacks=[vis])
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,51 +1,40 @@
|
||||
"""Neural Gas example using the Iris dataset."""
|
||||
|
||||
import numpy as np
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisNG2D
|
||||
from prototorch.models.neural_gas import NeuralGas
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.utils.data import DataLoader
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
# Prepare and pre-process the dataset
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
input_dim=x_train.shape[1],
|
||||
num_prototypes=30,
|
||||
lr=0.01,
|
||||
)
|
||||
hparams = dict(num_prototypes=30, lr=0.03)
|
||||
|
||||
# Initialize the model
|
||||
model = NeuralGas(hparams)
|
||||
model = pt.models.NeuralGas(hparams)
|
||||
|
||||
# Model summary
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisNG2D(x_train, y_train)
|
||||
vis = pt.models.VisNG2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=100,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
)
|
||||
trainer = pl.Trainer(max_epochs=200, callbacks=[vis])
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
@ -1,17 +1,12 @@
|
||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import (StratifiedMeanInitializer,
|
||||
StratifiedSelectionInitializer)
|
||||
from prototorch.datasets.abstract import NumpyDataset
|
||||
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
||||
from prototorch.models.glvq import SiameseGLVQ
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
"""Two fully connected layers with ReLU activation."""
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
@ -22,28 +17,36 @@ class Backbone(torch.nn.Module):
|
||||
self.relu = torch.nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.relu(self.dense2(self.relu(self.dense1(x))))
|
||||
x = self.relu(self.dense1(x))
|
||||
out = self.relu(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
train_ds = NumpyDataset(x_train, y_train)
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Reproducibility
|
||||
pl.utilities.seed.seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
||||
train_loader = torch.utils.data.DataLoader(train_ds,
|
||||
num_workers=0,
|
||||
batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
nclasses=3,
|
||||
prototypes_per_class=1,
|
||||
prototype_initializer=StratifiedMeanInitializer(
|
||||
torch.Tensor(x_train), torch.Tensor(y_train)),
|
||||
lr=0.01,
|
||||
prototypes_per_class=2,
|
||||
prototype_initializer=pt.components.SMI((x_train, y_train)),
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = SiameseGLVQ(
|
||||
model = pt.models.SiameseGLVQ(
|
||||
hparams,
|
||||
backbone_module=Backbone,
|
||||
)
|
||||
@ -52,7 +55,7 @@ if __name__ == "__main__":
|
||||
print(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(x_train, y_train)
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=(x_train, y_train), border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
||||
|
@ -1,5 +1,10 @@
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
from .cbc import CBC
|
||||
from .glvq import GLVQ, GMLVQ, GRLVQ, LVQMLN, ImageGLVQ, SiameseGLVQ
|
||||
from .neural_gas import NeuralGas
|
||||
from .vis import *
|
||||
|
||||
VERSION_FALLBACK = "uninstalled_version"
|
||||
try:
|
||||
__version__ = version(__name__.replace(".", "-"))
|
||||
|
23
prototorch/models/abstract.py
Normal file
23
prototorch/models/abstract.py
Normal file
@ -0,0 +1,23 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
|
||||
|
||||
class AbstractLightningModel(pl.LightningModule):
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
||||
scheduler = ExponentialLR(optimizer,
|
||||
gamma=0.99,
|
||||
last_epoch=-1,
|
||||
verbose=False)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
|
||||
|
||||
class AbstractPrototypeModel(AbstractLightningModel):
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
@ -1,10 +1,9 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
|
||||
from prototorch.components.components import Components
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.similarities import cosine_similarity
|
||||
from prototorch.modules.prototypes import Prototypes1D
|
||||
|
||||
|
||||
def rescaled_cosine_similarity(x, y):
|
||||
@ -93,12 +92,8 @@ class CBC(pl.LightningModule):
|
||||
super().__init__()
|
||||
self.save_hyperparameters(hparams)
|
||||
self.margin = margin
|
||||
self.proto_layer = Prototypes1D(
|
||||
input_dim=self.hparams.input_dim,
|
||||
nclasses=self.hparams.nclasses,
|
||||
prototypes_per_class=self.hparams.prototypes_per_class,
|
||||
prototype_initializer=self.hparams.prototype_initializer,
|
||||
**kwargs)
|
||||
self.component_layer = Components(self.hparams.num_components,
|
||||
self.hparams.component_initializer)
|
||||
# self.similarity = CosineSimilarity()
|
||||
self.similarity = similarity
|
||||
self.backbone = backbone_class()
|
||||
@ -110,7 +105,7 @@ class CBC(pl.LightningModule):
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
return self.proto_layer.prototypes.detach().cpu()
|
||||
return self.component_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def reasonings(self):
|
||||
@ -126,7 +121,7 @@ class CBC(pl.LightningModule):
|
||||
|
||||
def forward(self, x):
|
||||
self.sync_backbones()
|
||||
protos, _ = self.proto_layer()
|
||||
protos = self.component_layer()
|
||||
|
||||
latent_x = self.backbone(x)
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
@ -167,4 +162,4 @@ class ImageCBC(CBC):
|
||||
"""
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
# super().on_train_batch_end(outputs, batch, batch_idx, dataloader_idx)
|
||||
self.proto_layer.prototypes.data.clamp_(0.0, 1.0)
|
||||
self.component_layer.prototypes.data.clamp_(0.0, 1.0)
|
||||
|
@ -1,11 +1,11 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from prototorch.components import LabeledComponents
|
||||
from prototorch.functions.activations import get_activation
|
||||
from prototorch.functions.competitions import wtac
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.functions.distances import (euclidean_distance, omega_distance,
|
||||
squared_euclidean_distance)
|
||||
from prototorch.functions.losses import glvq_loss
|
||||
from prototorch.modules.prototypes import Prototypes1D
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
||||
@ -19,50 +19,53 @@ class GLVQ(AbstractPrototypeModel):
|
||||
|
||||
# Default Values
|
||||
self.hparams.setdefault("distance", euclidean_distance)
|
||||
self.hparams.setdefault("optimizer", torch.optim.Adam)
|
||||
self.hparams.setdefault("transfer_function", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
self.proto_layer = LabeledComponents(
|
||||
labels=(self.hparams.nclasses, self.hparams.prototypes_per_class),
|
||||
initializer=self.hparams.prototype_initializer)
|
||||
|
||||
self.transfer_function = get_activation(self.hparams.transfer_function)
|
||||
self.train_acc = torchmetrics.Accuracy()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.component_labels.detach().numpy()
|
||||
return self.proto_layer.component_labels.detach().cpu()
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
dis = self.hparams.distance(x, protos)
|
||||
return dis
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
x, y = train_batch
|
||||
x = x.view(x.size(0), -1)
|
||||
x = x.view(x.size(0), -1) # flatten
|
||||
dis = self(x)
|
||||
plabels = self.proto_layer.component_labels
|
||||
mu = glvq_loss(dis, y, prototype_labels=plabels)
|
||||
loss = mu.sum(dim=0)
|
||||
self.log("train_loss", loss)
|
||||
batch_loss = self.transfer_function(mu,
|
||||
beta=self.hparams.transfer_beta)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
|
||||
# Compute training accuracy
|
||||
with torch.no_grad():
|
||||
preds = wtac(dis, plabels)
|
||||
# self.train_acc.update(preds.int(), y.int())
|
||||
self.train_acc(
|
||||
preds.int(),
|
||||
y.int()) # FloatTensors are assumed to be class probabilities
|
||||
self.log(
|
||||
"acc",
|
||||
|
||||
self.train_acc(preds.int(), y.int())
|
||||
# `.int()` because FloatTensors are assumed to be class probabilities
|
||||
|
||||
# Logging
|
||||
self.log("train_loss", loss)
|
||||
self.log("acc",
|
||||
self.train_acc,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
)
|
||||
return loss
|
||||
logger=True)
|
||||
|
||||
# def training_epoch_end(self, outs):
|
||||
# # Calling `self.train_acc.compute()` is
|
||||
# # automatically done by setting `on_epoch=True` when logging in `self.training_step(...)`
|
||||
# self.log("train_acc_epoch", self.train_acc.compute())
|
||||
return loss
|
||||
|
||||
def predict(self, x):
|
||||
# model.eval() # ?!
|
||||
@ -76,8 +79,9 @@ class GLVQ(AbstractPrototypeModel):
|
||||
class ImageGLVQ(GLVQ):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by
|
||||
clamping after updates.
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
@ -89,6 +93,155 @@ class SiameseGLVQ(GLVQ):
|
||||
GLVQ model that applies an arbitrary transformation on the inputs and the
|
||||
prototypes before computing the distances between them. The weights in the
|
||||
transformation pipeline are only learned from the inputs.
|
||||
|
||||
"""
|
||||
def __init__(self,
|
||||
hparams,
|
||||
backbone_module=torch.nn.Identity,
|
||||
backbone_params={},
|
||||
sync=True,
|
||||
**kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.backbone = backbone_module(**backbone_params)
|
||||
self.backbone_dependent = backbone_module(
|
||||
**backbone_params).requires_grad_(False)
|
||||
self.sync = sync
|
||||
|
||||
def sync_backbones(self):
|
||||
master_state = self.backbone.state_dict()
|
||||
self.backbone_dependent.load_state_dict(master_state, strict=True)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optim = self.hparams.optimizer
|
||||
proto_opt = optim(self.proto_layer.parameters(),
|
||||
lr=self.hparams.proto_lr)
|
||||
if list(self.backbone.parameters()):
|
||||
# only add an optimizer is the backbone has trainable parameters
|
||||
# otherwise, the next line fails
|
||||
bb_opt = optim(self.backbone.parameters(), lr=self.hparams.bb_lr)
|
||||
return proto_opt, bb_opt
|
||||
else:
|
||||
return proto_opt
|
||||
|
||||
def forward(self, x):
|
||||
if self.sync:
|
||||
self.sync_backbones()
|
||||
protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
dis = euclidean_distance(latent_x, latent_protos)
|
||||
return dis
|
||||
|
||||
def predict_latent(self, x):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
d = euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred.numpy()
|
||||
|
||||
|
||||
class GRLVQ(GLVQ):
|
||||
"""Generalized Relevance Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.relevances = torch.nn.parameter.Parameter(
|
||||
torch.ones(self.hparams.input_dim))
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
dis = omega_distance(x, protos, torch.diag(self.relevances))
|
||||
return dis
|
||||
|
||||
def backbone(self, x):
|
||||
return x @ torch.diag(self.relevances)
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
return self.relevances.detach().cpu()
|
||||
|
||||
def predict_latent(self, x):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
latent_protos = protos @ torch.diag(self.relevances)
|
||||
d = squared_euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred.numpy()
|
||||
|
||||
|
||||
class GMLVQ(GLVQ):
|
||||
"""Generalized Matrix Learning Vector Quantization."""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.omega_layer = torch.nn.Linear(self.hparams.input_dim,
|
||||
self.hparams.latent_dim,
|
||||
bias=False)
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self.omega_layer.weight.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self.omega_layer.weight
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
def show_lambda(self):
|
||||
import matplotlib.pyplot as plt
|
||||
title = "Lambda matrix"
|
||||
plt.figure(title)
|
||||
plt.title(title)
|
||||
plt.imshow(self.lambda_matrix, cmap="gray")
|
||||
plt.axis("off")
|
||||
plt.colorbar()
|
||||
plt.show(block=True)
|
||||
|
||||
def forward(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
latent_x = self.omega_layer(x)
|
||||
latent_protos = self.omega_layer(protos)
|
||||
dis = squared_euclidean_distance(latent_x, latent_protos)
|
||||
return dis
|
||||
|
||||
def predict_latent(self, x):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
# model.eval() # ?!
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
latent_protos = self.omega_layer(protos)
|
||||
d = squared_euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred.numpy()
|
||||
|
||||
|
||||
class LVQMLN(GLVQ):
|
||||
"""Learning Vector Quantization Multi-Layer Network.
|
||||
|
||||
GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT
|
||||
on the prototypes before computing the distances between them. This of
|
||||
course, means that the prototypes no longer live the input space, but
|
||||
rather in the embedding space.
|
||||
|
||||
"""
|
||||
def __init__(self,
|
||||
hparams,
|
||||
@ -97,28 +250,17 @@ class SiameseGLVQ(GLVQ):
|
||||
**kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.backbone = backbone_module(**backbone_params)
|
||||
self.backbone_dependent = backbone_module(
|
||||
**backbone_params).requires_grad_(False)
|
||||
|
||||
def sync_backbones(self):
|
||||
master_state = self.backbone.state_dict()
|
||||
self.backbone_dependent.load_state_dict(master_state, strict=True)
|
||||
|
||||
def forward(self, x):
|
||||
self.sync_backbones()
|
||||
protos, _ = self.proto_layer()
|
||||
|
||||
latent_protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
|
||||
dis = euclidean_distance(latent_x, latent_protos)
|
||||
return dis
|
||||
|
||||
def predict_latent(self, x):
|
||||
# model.eval() # ?!
|
||||
"""Predict `x` assuming it is already embedded in the latent space."""
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
latent_protos = self.backbone_dependent(protos)
|
||||
latent_protos, plabels = self.proto_layer()
|
||||
d = euclidean_distance(x, latent_protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred.numpy()
|
||||
|
@ -1,9 +1,7 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.components import Components
|
||||
from prototorch.components import initializers as cinit
|
||||
from prototorch.functions.distances import euclidean_distance
|
||||
from prototorch.modules import Prototypes1D
|
||||
from prototorch.modules.losses import NeuralGasEnergy
|
||||
|
||||
from .abstract import AbstractPrototypeModel
|
||||
|
@ -9,6 +9,7 @@ from prototorch.utils.celluloid import Camera
|
||||
from prototorch.utils.colors import color_scheme
|
||||
from prototorch.utils.utils import (gif_from_dir, make_directory,
|
||||
prettify_string)
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
|
||||
class VisWeights(pl.Callback):
|
||||
@ -261,29 +262,82 @@ class VisPointProtos(VisWeights):
|
||||
self._show_and_save(epoch)
|
||||
|
||||
|
||||
class VisGLVQ2D(pl.Callback):
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
data,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
cmap="viridis",
|
||||
border=1,
|
||||
resolution=50,
|
||||
tensorboard=False,
|
||||
show_last_only=False,
|
||||
pause_time=0.1,
|
||||
block=False):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
|
||||
if isinstance(data, Dataset):
|
||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||
x = x.view(len(data), -1) # flatten
|
||||
else:
|
||||
x, y = data
|
||||
self.x_train = x
|
||||
self.y_train = y
|
||||
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.border = border
|
||||
self.resolution = resolution
|
||||
self.tensorboard = tensorboard
|
||||
self.show_last_only = show_last_only
|
||||
self.pause_time = pause_time
|
||||
self.block = block
|
||||
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
def setup_ax(self, xlabel=None, ylabel=None):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.axis("off")
|
||||
if xlabel:
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
if ylabel:
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
return ax
|
||||
|
||||
def get_mesh_input(self, x):
|
||||
x_min, x_max = x[:, 0].min() - self.border, x[:, 0].max() + self.border
|
||||
y_min, y_max = x[:, 1].min() - self.border, x[:, 1].max() + self.border
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / self.resolution),
|
||||
np.arange(y_min, y_max, 1 / self.resolution))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
return mesh_input, xx, yy
|
||||
|
||||
def add_to_tensorboard(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
tb.add_figure(tag=f"{self.title}",
|
||||
figure=self.fig,
|
||||
global_step=trainer.current_epoch,
|
||||
close=False)
|
||||
|
||||
def log_and_display(self, trainer, pl_module):
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if not self.block:
|
||||
plt.pause(self.pause_time)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
if self.show_last_only:
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
return
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
@ -295,43 +349,25 @@ class VisGLVQ2D(pl.Callback):
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
plt.pause(0.1)
|
||||
# ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
# ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisSiameseGLVQ2D(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
x_train = pl_module.backbone(torch.Tensor(x_train)).detach()
|
||||
protos = pl_module.backbone(torch.Tensor(protos)).detach()
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.axis("off")
|
||||
ax = self.setup_ax()
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
@ -343,54 +379,54 @@ class VisSiameseGLVQ2D(pl.Callback):
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
y_pred = pl_module.predict_latent(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
tb = pl_module.logger.experiment
|
||||
tb.add_figure(
|
||||
tag=f"{self.title}",
|
||||
figure=self.fig,
|
||||
global_step=trainer.current_epoch,
|
||||
close=False,
|
||||
)
|
||||
plt.pause(0.1)
|
||||
# ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
# ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisNG2D(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
title="Neural Gas Visualization",
|
||||
cmap="viridis"):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.components
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c="w",
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
# ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
# ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.prototypes
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
# Visualize the data and the prototypes
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(self.x_train[:, 0],
|
||||
self.x_train[:, 1],
|
||||
c=self.y_train,
|
||||
edgecolor="k")
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
@ -410,4 +446,4 @@ class VisNG2D(pl.Callback):
|
||||
"k-",
|
||||
)
|
||||
|
||||
plt.pause(0.01)
|
||||
self.log_and_display(trainer, pl_module)
|
Loading…
Reference in New Issue
Block a user