Move CELVQ to probabilistic.py

This commit is contained in:
Jensun Ravichandran 2021-06-01 23:39:06 +02:00
parent aff6aedd60
commit 8403b01081

View File

@ -1,13 +1,29 @@
"""Probabilistic GLVQ methods""" """Probabilistic GLVQ methods"""
import torch import torch
from prototorch.functions.competitions import stratified_sum from prototorch.functions.competitions import stratified_min, stratified_sum
from prototorch.functions.losses import log_likelihood_ratio_loss, robust_soft_loss from prototorch.functions.losses import log_likelihood_ratio_loss, robust_soft_loss
from prototorch.functions.transforms import gaussian from prototorch.functions.transforms import gaussian
from .glvq import GLVQ from .glvq import GLVQ
class CELVQ(GLVQ):
"""Cross-Entropy Learning Vector Quantization."""
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.loss = torch.nn.CrossEntropyLoss()
def shared_step(self, batch, batch_idx, optimizer_idx=None):
x, y = batch
out = self._forward(x) # [None, num_protos]
plabels = self.proto_layer.component_labels
probs = -1.0 * stratified_min(out, plabels) # [None, num_classes]
batch_loss = self.loss(probs, y.long())
loss = batch_loss.sum(dim=0)
return out, loss
class ProbabilisticLVQ(GLVQ): class ProbabilisticLVQ(GLVQ):
def __init__(self, hparams, rejection_confidence=0.0, **kwargs): def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
super().__init__(hparams, **kwargs) super().__init__(hparams, **kwargs)