feat: add neural additive model for binary classification
This commit is contained in:
81
examples/binnam_tecator.py
Normal file
81
examples/binnam_tecator.py
Normal file
@@ -0,0 +1,81 @@
|
||||
"""Neural Additive Model (NAM) example for binary classification."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Tecator("~/datasets")
|
||||
|
||||
# Dataloaders
|
||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(lr=0.1)
|
||||
|
||||
# Define the feature extractor
|
||||
class FE(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.modules_list = torch.nn.ModuleList([
|
||||
torch.nn.Linear(1, 3),
|
||||
torch.nn.Sigmoid(),
|
||||
torch.nn.Linear(3, 1),
|
||||
torch.nn.Sigmoid(),
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
for m in self.modules_list:
|
||||
x = m(x)
|
||||
return x
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.BinaryNAM(
|
||||
hparams,
|
||||
extractors=torch.nn.ModuleList([FE() for _ in range(100)]),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 100)
|
||||
|
||||
# Callbacks
|
||||
es = pl.callbacks.EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
es,
|
||||
],
|
||||
terminate_on_nan=True,
|
||||
weights_summary=None,
|
||||
accelerator="ddp",
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Visualize extractor shape functions
|
||||
fig, axes = plt.subplots(10, 10)
|
||||
for i, ax in enumerate(axes.flat):
|
||||
x = torch.linspace(-2, 2, 100) # TODO use min/max from data
|
||||
y = model.extractors[i](x.view(100, 1)).squeeze().detach()
|
||||
ax.plot(x, y)
|
||||
ax.set(title=f"Feature {i + 1}", xticklabels=[], yticklabels=[])
|
||||
plt.show()
|
Reference in New Issue
Block a user