[WIP] Update examples/liramlvq_tecator.py
This commit is contained in:
parent
757f4e980d
commit
7e241ff7d8
@ -2,10 +2,21 @@
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import prototorch as pt
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
import prototorch as pt
|
|
||||||
|
def plot_matrix(matrix):
|
||||||
|
title = "Lambda matrix"
|
||||||
|
plt.figure(title)
|
||||||
|
plt.title(title)
|
||||||
|
plt.imshow(matrix, cmap="gray")
|
||||||
|
plt.axis("off")
|
||||||
|
plt.colorbar()
|
||||||
|
plt.show(block=True)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Command-line arguments
|
# Command-line arguments
|
||||||
@ -18,7 +29,7 @@ if __name__ == "__main__":
|
|||||||
test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
|
test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
|
||||||
|
|
||||||
# Reproducibility
|
# Reproducibility
|
||||||
pl.utilities.seed.seed_everything(seed=42)
|
pl.utilities.seed.seed_everything(seed=10)
|
||||||
|
|
||||||
# Dataloaders
|
# Dataloaders
|
||||||
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
|
||||||
@ -28,23 +39,30 @@ if __name__ == "__main__":
|
|||||||
hparams = dict(
|
hparams = dict(
|
||||||
distribution={
|
distribution={
|
||||||
"num_classes": 2,
|
"num_classes": 2,
|
||||||
"prototypes_per_class": 2
|
"prototypes_per_class": 1
|
||||||
},
|
},
|
||||||
input_dim=100,
|
input_dim=100,
|
||||||
latent_dim=2,
|
latent_dim=2,
|
||||||
proto_lr=0.001,
|
proto_lr=0.0001,
|
||||||
bb_lr=0.001,
|
bb_lr=0.0001,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Initialize the model
|
# Initialize the model
|
||||||
model = pt.models.GMLVQ(hparams,
|
model = pt.models.SiameseGMLVQ(
|
||||||
prototype_initializer=pt.components.SMI(train_ds))
|
hparams,
|
||||||
|
# optimizer=torch.optim.SGD,
|
||||||
|
optimizer=torch.optim.Adam,
|
||||||
|
prototype_initializer=pt.components.SMI(train_ds),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Summary
|
||||||
|
print(model)
|
||||||
|
|
||||||
# Callbacks
|
# Callbacks
|
||||||
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
|
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
|
||||||
es = pl.callbacks.EarlyStopping(monitor="val_loss",
|
es = pl.callbacks.EarlyStopping(monitor="val_loss",
|
||||||
min_delta=0.001,
|
min_delta=0.001,
|
||||||
patience=3,
|
patience=50,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
mode="min")
|
mode="min")
|
||||||
|
|
||||||
@ -52,6 +70,7 @@ if __name__ == "__main__":
|
|||||||
trainer = pl.Trainer.from_argparse_args(
|
trainer = pl.Trainer.from_argparse_args(
|
||||||
args,
|
args,
|
||||||
callbacks=[vis, es],
|
callbacks=[vis, es],
|
||||||
|
weights_summary=None,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Training loop
|
# Training loop
|
||||||
@ -64,7 +83,7 @@ if __name__ == "__main__":
|
|||||||
saved_model = torch.load("liramlvq_tecator.pt")
|
saved_model = torch.load("liramlvq_tecator.pt")
|
||||||
|
|
||||||
# Display the Lambda matrix
|
# Display the Lambda matrix
|
||||||
saved_model.show_lambda()
|
plot_matrix(saved_model.lambda_matrix)
|
||||||
|
|
||||||
# Testing
|
# Testing
|
||||||
trainer.test(model, test_dataloaders=test_loader)
|
trainer.test(model, test_dataloaders=test_loader)
|
||||||
|
Loading…
Reference in New Issue
Block a user