Merge branch 'dev' of github.com:si-cim/prototorch_models into dev
This commit is contained in:
commit
7b7bc3693d
@ -1,12 +1,11 @@
|
||||
"""GLVQ example using the MNIST dataset."""
|
||||
|
||||
from prototorch.models import ImageGLVQ
|
||||
from prototorch.models.data import train_on_mnist
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
|
||||
from mnist import TrainOnMNIST
|
||||
|
||||
|
||||
class GLVQMNIST(TrainOnMNIST, ImageGLVQ):
|
||||
class GLVQMNIST(train_on_mnist(batch_size=64), ImageGLVQ):
|
||||
"""Model Definition."""
|
||||
|
||||
|
||||
|
@ -33,11 +33,12 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = pt.models.probabilistic.RSLVQ(
|
||||
model = pt.models.probabilistic.LikelihoodRatioLVQ(
|
||||
#model = pt.models.probabilistic.RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototype_initializer=pt.components.SSI(train_ds, noise=2),
|
||||
#prototype_initializer=pt.components.UniformInitializer(2),
|
||||
#prototype_initializer=pt.components.SSI(train_ds, noise=2),
|
||||
prototype_initializer=pt.components.UniformInitializer(2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
|
@ -10,15 +10,12 @@ class MNISTDataModule(pl.LightningDataModule):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
# When doing distributed training, Datamodules have two optional arguments for
|
||||
# granular control over download/prepare/splitting data:
|
||||
|
||||
# OPTIONAL, called only on 1 GPU/machine
|
||||
# Download mnist dataset as side-effect, only called on the first cpu
|
||||
def prepare_data(self):
|
||||
MNIST("~/datasets", train=True, download=True)
|
||||
MNIST("~/datasets", train=False, download=True)
|
||||
|
||||
# OPTIONAL, called for every GPU/machine (assigning state is OK)
|
||||
# called for every GPU/machine (assigning state is OK)
|
||||
def setup(self, stage=None):
|
||||
# Transforms
|
||||
transform = transforms.Compose([
|
||||
@ -28,13 +25,17 @@ class MNISTDataModule(pl.LightningDataModule):
|
||||
if stage in (None, "fit"):
|
||||
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
||||
self.mnist_train, self.mnist_val = random_split(
|
||||
mnist_train, [55000, 5000])
|
||||
mnist_train,
|
||||
[55000, 5000],
|
||||
)
|
||||
if stage == (None, "test"):
|
||||
self.mnist_test = MNIST("~/datasets",
|
||||
self.mnist_test = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
transform=transform)
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Return the dataloader for each split
|
||||
# Dataloaders
|
||||
def train_dataloader(self):
|
||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
||||
return mnist_train
|
||||
@ -48,8 +49,11 @@ class MNISTDataModule(pl.LightningDataModule):
|
||||
return mnist_test
|
||||
|
||||
|
||||
class TrainOnMNIST(pl.LightningModule):
|
||||
datamodule = MNISTDataModule(batch_size=256)
|
||||
def train_on_mnist(batch_size=256) -> type:
|
||||
class DataClass(pl.LightningModule):
|
||||
datamodule = MNISTDataModule(batch_size=batch_size)
|
||||
|
||||
def prototype_initializer(self, **kwargs):
|
||||
return pt.components.Zeros((28, 28, 1))
|
||||
|
||||
return DataClass
|
@ -1,100 +1,26 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
from prototorch.functions.competitions import stratified_sum
|
||||
from prototorch.functions.losses import (log_likelihood_ratio_loss,
|
||||
robust_soft_loss)
|
||||
from prototorch.functions.transform import gaussian
|
||||
|
||||
from .glvq import GLVQ
|
||||
|
||||
|
||||
# HELPER
|
||||
# TODO: Refactor into general files, if useful
|
||||
def probability(distance, variance):
|
||||
return torch.exp(-(distance * distance) / (2 * variance))
|
||||
|
||||
|
||||
def grouped_sum(value: torch.Tensor,
|
||||
labels: torch.LongTensor) -> (torch.Tensor, torch.LongTensor):
|
||||
"""Group-wise average for (sparse) grouped tensors
|
||||
|
||||
Args:
|
||||
value (torch.Tensor): values to average (# samples, latent dimension)
|
||||
labels (torch.LongTensor): labels for embedding parameters (# samples,)
|
||||
|
||||
Returns:
|
||||
result (torch.Tensor): (# unique labels, latent dimension)
|
||||
new_labels (torch.LongTensor): (# unique labels,)
|
||||
|
||||
Examples:
|
||||
>>> samples = torch.Tensor([
|
||||
[0.15, 0.15, 0.15], #-> group / class 1
|
||||
[0.2, 0.2, 0.2 ], #-> group / class 3
|
||||
[0.4, 0.4, 0.4 ], #-> group / class 3
|
||||
[0.0, 0.0, 0.0 ] #-> group / class 0
|
||||
])
|
||||
>>> labels = torch.LongTensor([1, 5, 5, 0])
|
||||
>>> result, new_labels = groupby_mean(samples, labels)
|
||||
|
||||
>>> result
|
||||
tensor([[0.0000, 0.0000, 0.0000],
|
||||
[0.1500, 0.1500, 0.1500],
|
||||
[0.3000, 0.3000, 0.3000]])
|
||||
|
||||
>>> new_labels
|
||||
tensor([0, 1, 5])
|
||||
"""
|
||||
uniques = labels.unique(sorted=True).tolist()
|
||||
labels = labels.tolist()
|
||||
|
||||
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
||||
labels = torch.LongTensor(list(map(key_val.get, labels)))
|
||||
|
||||
labels = labels.view(labels.size(0), 1).expand(-1, value.size(1))
|
||||
|
||||
unique_labels = labels.unique(dim=0)
|
||||
result = torch.zeros_like(unique_labels, dtype=torch.float).scatter_add_(
|
||||
0, labels, value)
|
||||
return result.T
|
||||
|
||||
|
||||
def likelihood_loss(probabilities, target, prototype_labels):
|
||||
uniques = prototype_labels.unique(sorted=True).tolist()
|
||||
labels = target.tolist()
|
||||
|
||||
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
||||
target_indices = torch.LongTensor(list(map(key_val.get, labels)))
|
||||
|
||||
whole_probability = probabilities.sum(dim=1)
|
||||
correct_probability = probabilities[torch.arange(len(probabilities)),
|
||||
target_indices]
|
||||
wrong_probability = whole_probability - correct_probability
|
||||
|
||||
likelihood = correct_probability / wrong_probability
|
||||
log_likelihood = torch.log(likelihood)
|
||||
return log_likelihood
|
||||
|
||||
|
||||
def robust_soft_loss(probabilities, target, prototype_labels):
|
||||
uniques = prototype_labels.unique(sorted=True).tolist()
|
||||
labels = target.tolist()
|
||||
|
||||
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
||||
target_indices = torch.LongTensor(list(map(key_val.get, labels)))
|
||||
|
||||
whole_probability = probabilities.sum(dim=1)
|
||||
correct_probability = probabilities[torch.arange(len(probabilities)),
|
||||
target_indices]
|
||||
|
||||
likelihood = correct_probability / whole_probability
|
||||
log_likelihood = torch.log(likelihood)
|
||||
return log_likelihood
|
||||
|
||||
|
||||
class LikelihoodRatioLVQ(GLVQ):
|
||||
"""Learning Vector Quantization based on Likelihood Ratios
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
class ProbabilisticLVQ(GLVQ):
|
||||
def __init__(self, hparams, rejection_confidence=1.0, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.conditional_distribution = probability
|
||||
self.conditional_distribution = gaussian
|
||||
self.rejection_confidence = rejection_confidence
|
||||
|
||||
def predict(self, x):
|
||||
probabilities = self.forward(x)
|
||||
confidence, prediction = torch.max(probabilities, dim=1)
|
||||
prediction[confidence < self.rejection_confidence] = -1
|
||||
return prediction
|
||||
|
||||
def forward(self, x):
|
||||
distances = self._forward(x)
|
||||
@ -104,7 +30,7 @@ class LikelihoodRatioLVQ(GLVQ):
|
||||
posterior = conditional * prior
|
||||
|
||||
plabels = torch.LongTensor(self.proto_layer.component_labels)
|
||||
y_pred = grouped_sum(posterior.T, plabels)
|
||||
y_pred = stratified_sum(posterior.T, plabels)
|
||||
|
||||
return y_pred
|
||||
|
||||
@ -112,52 +38,26 @@ class LikelihoodRatioLVQ(GLVQ):
|
||||
X, y = batch
|
||||
out = self.forward(X)
|
||||
plabels = self.proto_layer.component_labels
|
||||
batch_loss = -likelihood_loss(out, y, prototype_labels=plabels)
|
||||
batch_loss = -self.loss_fn(out, y, plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
|
||||
return loss
|
||||
|
||||
def predict(self, x):
|
||||
probabilities = self.forward(x)
|
||||
confidence, prediction = torch.max(probabilities, dim=1)
|
||||
prediction[confidence < 0.1] = -1
|
||||
return prediction
|
||||
|
||||
|
||||
class RSLVQ(GLVQ):
|
||||
class LikelihoodRatioLVQ(ProbabilisticLVQ):
|
||||
"""Learning Vector Quantization based on Likelihood Ratios
|
||||
"""
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.conditional_distribution = probability
|
||||
|
||||
def forward(self, x):
|
||||
distances = self._forward(x)
|
||||
conditional = self.conditional_distribution(distances,
|
||||
self.hparams.variance)
|
||||
prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item()
|
||||
posterior = conditional * prior
|
||||
|
||||
plabels = torch.LongTensor(self.proto_layer.component_labels)
|
||||
y_pred = grouped_sum(posterior.T, plabels)
|
||||
|
||||
return y_pred
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
X, y = batch
|
||||
out = self.forward(X)
|
||||
plabels = self.proto_layer.component_labels
|
||||
batch_loss = -robust_soft_loss(out, y, prototype_labels=plabels)
|
||||
loss = batch_loss.sum(dim=0)
|
||||
|
||||
return loss
|
||||
|
||||
def predict(self, x):
|
||||
probabilities = self.forward(x)
|
||||
confidence, prediction = torch.max(probabilities, dim=1)
|
||||
#prediction[confidence < 0.1] = -1
|
||||
return prediction
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss_fn = log_likelihood_ratio_loss
|
||||
|
||||
|
||||
__all__ = ["LikelihoodRatioLVQ", "probability", "grouped_sum"]
|
||||
class RSLVQ(ProbabilisticLVQ):
|
||||
"""Learning Vector Quantization based on Likelihood Ratios
|
||||
"""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.loss_fn = robust_soft_loss
|
||||
|
||||
|
||||
__all__ = ["LikelihoodRatioLVQ", "RSLVQ"]
|
||||
|
Loading…
Reference in New Issue
Block a user