chore: update all examples to pytorch 1.6

This commit is contained in:
Alexander Engelsberger 2022-05-17 12:03:43 +02:00
parent c00513ae0d
commit 76fea3f881
No known key found for this signature in database
GPG Key ID: 72E54A9DAE51EB96
19 changed files with 453 additions and 200 deletions

View File

@ -1,12 +1,22 @@
"""CBC example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import CBC, VisCBC2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -15,11 +25,8 @@ if __name__ == "__main__":
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32)
train_loader = DataLoader(train_ds, batch_size=32)
# Hyperparameters
hparams = dict(
@ -30,23 +37,30 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.CBC(
model = CBC(
hparams,
components_initializer=pt.initializers.SSCI(train_ds, noise=0.01),
reasonings_iniitializer=pt.initializers.
components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
reasonings_initializer=pt.initializers.
PurePositiveReasoningsInitializer(),
)
# Callbacks
vis = pt.models.VisCBC2D(data=train_ds,
title="CBC Iris Example",
resolution=100,
axis_off=True)
vis = VisCBC2D(
data=train_ds,
title="CBC Iris Example",
resolution=100,
axis_off=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
callbacks=[
vis,
],
detect_anomaly=True,
log_every_n_steps=1,
max_epochs=1000,
)
# Training loop

View File

@ -1,12 +1,29 @@
"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import (
CELVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -16,15 +33,17 @@ if __name__ == "__main__":
num_classes = 4
num_features = 2
num_clusters = 1
train_ds = pt.datasets.Random(num_samples=500,
num_classes=num_classes,
num_features=num_features,
num_clusters=num_clusters,
separation=3.0,
seed=42)
train_ds = pt.datasets.Random(
num_samples=500,
num_classes=num_classes,
num_features=num_features,
num_clusters=num_clusters,
separation=3.0,
seed=42,
)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters
prototypes_per_class = num_clusters * 5
@ -34,7 +53,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.CELVQ(
model = CELVQ(
hparams,
prototypes_initializer=pt.initializers.FVCI(2, 3.0),
)
@ -43,18 +62,18 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(train_ds)
pruning = pt.models.PruneLoserPrototypes(
vis = VisGLVQ2D(train_ds)
pruning = PruneLoserPrototypes(
threshold=0.01, # prune prototype if it wins less than 1%
idle_epochs=20, # pruning too early may cause problems
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
frequency=1, # prune every epoch
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=20,
@ -71,10 +90,9 @@ if __name__ == "__main__":
pruning,
es,
],
progress_bar_refresh_rate=0,
terminate_on_nan=True,
weights_summary="full",
accelerator="ddp",
detect_anomaly=True,
log_every_n_steps=1,
max_epochs=1000,
)
# Training loop

View File

@ -1,13 +1,24 @@
"""GLVQ example using the Iris dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import GLVQ, VisGLVQ2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -17,7 +28,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
# Hyperparameters
hparams = dict(
@ -29,7 +40,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GLVQ(
model = GLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
@ -41,13 +52,17 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
vis = VisGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
@ -57,8 +72,8 @@ if __name__ == "__main__":
trainer.save_checkpoint("./glvq_iris.ckpt")
# Load saved model
new_model = pt.models.GLVQ.load_from_checkpoint(
new_model = GLVQ.load_from_checkpoint(
checkpoint_path="./glvq_iris.ckpt",
strict=False,
)
print(new_model)
logging.info(new_model)

View File

@ -1,13 +1,25 @@
"""GMLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import GMLVQ, VisGMLVQ2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -17,7 +29,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.Iris()
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
@ -32,7 +44,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GMLVQ(
model = GMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
@ -44,14 +56,17 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 4)
# Callbacks
vis = pt.models.VisGMLVQ2D(data=train_ds)
vis = VisGMLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
accelerator="ddp",
callbacks=[
vis,
],
max_epochs=100,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,14 +1,29 @@
"""GMLVQ example using the MNIST dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import (
ImageGMLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -33,12 +48,8 @@ if __name__ == "__main__":
)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
# Hyperparameters
num_classes = 10
@ -52,14 +63,14 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.ImageGMLVQ(
model = ImageGMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
)
# Callbacks
vis = pt.models.VisImgComp(
vis = VisImgComp(
data=train_ds,
num_columns=10,
show=False,
@ -69,14 +80,14 @@ if __name__ == "__main__":
embedding_data=200,
flatten_data=False,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=1,
prune_quota_per_epoch=10,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=15,
@ -90,11 +101,11 @@ if __name__ == "__main__":
callbacks=[
vis,
pruning,
# es,
es,
],
terminate_on_nan=True,
weights_summary=None,
# accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,12 +1,28 @@
"""GMLVQ example using the spiral dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import (
GMLVQ,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -16,7 +32,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
train_loader = DataLoader(train_ds, batch_size=256)
# Hyperparameters
num_classes = 2
@ -32,19 +48,19 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GMLVQ(
model = GMLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
)
# Callbacks
vis = pt.models.VisGLVQ2D(
vis = VisGLVQ2D(
train_ds,
show_last_only=False,
block=False,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=10,
prune_quota_per_epoch=5,
@ -53,7 +69,7 @@ if __name__ == "__main__":
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=1.0,
patience=5,
@ -69,7 +85,9 @@ if __name__ == "__main__":
es,
pruning,
],
terminate_on_nan=True,
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,10 +1,19 @@
"""Growing Neural Gas example using the Iris dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import GrowingNeuralGas, VisNG2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
@ -13,11 +22,11 @@ if __name__ == "__main__":
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
@ -27,7 +36,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.GrowingNeuralGas(
model = GrowingNeuralGas(
hparams,
prototypes_initializer=pt.initializers.ZCI(2),
)
@ -36,17 +45,20 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisNG2D(data=train_loader)
vis = VisNG2D(data=train_loader)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
],
max_epochs=100,
callbacks=[vis],
weights_summary="full",
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,14 +1,30 @@
"""GTLVQ example using the MNIST dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import (
ImageGTLVQ,
PruneLoserPrototypes,
VisImgComp,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -33,12 +49,8 @@ if __name__ == "__main__":
)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=256)
test_loader = torch.utils.data.DataLoader(test_ds,
num_workers=0,
batch_size=256)
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
# Hyperparameters
num_classes = 10
@ -52,7 +64,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.ImageGTLVQ(
model = ImageGTLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SMCI(train_ds),
@ -61,7 +73,7 @@ if __name__ == "__main__":
next(iter(train_loader))[0].reshape(256, 28 * 28)))
# Callbacks
vis = pt.models.VisImgComp(
vis = VisImgComp(
data=train_ds,
num_columns=10,
show=False,
@ -71,14 +83,14 @@ if __name__ == "__main__":
embedding_data=200,
flatten_data=False,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=1,
prune_quota_per_epoch=10,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=15,
@ -93,11 +105,11 @@ if __name__ == "__main__":
callbacks=[
vis,
pruning,
# es,
es,
],
terminate_on_nan=True,
weights_summary=None,
accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,10 +1,20 @@
"""Localized-GTLVQ example using the Moons dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import GTLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
@ -13,33 +23,35 @@ if __name__ == "__main__":
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
train_loader = DataLoader(
train_ds,
batch_size=256,
shuffle=True,
)
# Hyperparameters
# Latent_dim should be lower than input dim.
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
# Initialize the model
model = pt.models.GTLVQ(
hparams, prototypes_initializer=pt.initializers.SMCI(train_ds))
model = GTLVQ(hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds))
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
@ -55,8 +67,9 @@ if __name__ == "__main__":
vis,
es,
],
weights_summary="full",
accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,12 +1,19 @@
"""k-NN example using the Iris dataset from scikit-learn."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import KNN, VisGLVQ2D
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__":
# Command-line arguments
@ -16,34 +23,36 @@ if __name__ == "__main__":
# Dataset
X, y = load_iris(return_X_y=True)
X = X[:, [0, 2]]
X = X[:, 0:3:2]
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.5,
random_state=42)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.5,
random_state=42,
)
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
train_loader = DataLoader(train_ds, batch_size=16)
test_loader = DataLoader(test_ds, batch_size=16)
# Hyperparameters
hparams = dict(k=5)
# Initialize the model
model = pt.models.KNN(hparams, data=train_ds)
model = KNN(hparams, data=train_ds)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(
vis = VisGLVQ2D(
data=(X_train, y_train),
resolution=200,
block=True,
@ -53,8 +62,11 @@ if __name__ == "__main__":
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=1,
callbacks=[vis],
weights_summary="full",
callbacks=[
vis,
],
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
@ -63,7 +75,7 @@ if __name__ == "__main__":
# Recall
y_pred = model.predict(torch.tensor(X_train))
print(y_pred)
logging.info(y_pred)
# Test
trainer.test(model, dataloaders=test_loader)

View File

@ -1,12 +1,21 @@
"""Kohonen Self Organizing Map."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
from prototorch.models import KohonenSOM
from prototorch.utils.colors import hex_to_rgb
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader, TensorDataset
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Vis2DColorSOM(pl.Callback):
@ -18,7 +27,7 @@ class Vis2DColorSOM(pl.Callback):
self.data = data
self.pause_time = pause_time
def on_epoch_end(self, trainer, pl_module):
def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
@ -31,12 +40,14 @@ class Vis2DColorSOM(pl.Callback):
d = pl_module.compute_distances(self.data)
wp = pl_module.predict_from_distances(d)
for i, iloc in enumerate(wp):
plt.text(iloc[1],
iloc[0],
cnames[i],
ha="center",
va="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0))
plt.text(
iloc[1],
iloc[0],
color_names[i],
ha="center",
va="center",
bbox=dict(facecolor="white", alpha=0.5, lw=0),
)
if trainer.current_epoch != trainer.max_epochs - 1:
plt.pause(self.pause_time)
@ -51,7 +62,7 @@ if __name__ == "__main__":
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Prepare the data
hex_colors = [
@ -59,15 +70,15 @@ if __name__ == "__main__":
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
]
cnames = [
color_names = [
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
"lightgrey", "olive", "purple", "orange"
]
colors = list(hex_to_rgb(hex_colors))
data = torch.Tensor(colors) / 255.0
train_ds = torch.utils.data.TensorDataset(data)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=8)
train_ds = TensorDataset(data)
train_loader = DataLoader(train_ds, batch_size=8)
# Hyperparameters
hparams = dict(
@ -78,7 +89,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.KohonenSOM(
model = KohonenSOM(
hparams,
prototypes_initializer=pt.initializers.RNCI(3),
)
@ -87,7 +98,7 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 3)
# Model summary
print(model)
logging.info(model)
# Callbacks
vis = Vis2DColorSOM(data=data)
@ -96,8 +107,11 @@ if __name__ == "__main__":
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=500,
callbacks=[vis],
weights_summary="full",
callbacks=[
vis,
],
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,10 +1,20 @@
"""Localized-GMLVQ example using the Moons dataset."""
import argparse
import logging
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import LGMLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
@ -13,15 +23,13 @@ if __name__ == "__main__":
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
# Hyperparameters
hparams = dict(
@ -31,7 +39,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.LGMLVQ(
model = LGMLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
)
@ -40,11 +48,11 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
logging.info(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
@ -60,8 +68,9 @@ if __name__ == "__main__":
vis,
es,
],
weights_summary="full",
accelerator="ddp",
log_every_n_steps=1,
max_epochs=1000,
detect_anomaly=True,
)
# Training loop

View File

@ -1,10 +1,22 @@
"""LVQMLN example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import (
LVQMLN,
PruneLoserPrototypes,
VisSiameseGLVQ2D,
)
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
@ -34,10 +46,10 @@ if __name__ == "__main__":
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
@ -50,7 +62,7 @@ if __name__ == "__main__":
backbone = Backbone()
# Initialize the model
model = pt.models.LVQMLN(
model = LVQMLN(
hparams,
prototypes_initializer=pt.initializers.SSCI(
train_ds,
@ -59,18 +71,15 @@ if __name__ == "__main__":
backbone=backbone,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(
vis = VisSiameseGLVQ2D(
data=train_ds,
map_protos=False,
border=0.1,
resolution=500,
axis_off=True,
)
pruning = pt.models.PruneLoserPrototypes(
pruning = PruneLoserPrototypes(
threshold=0.01,
idle_epochs=20,
prune_quota_per_epoch=2,
@ -85,6 +94,9 @@ if __name__ == "__main__":
vis,
pruning,
],
log_every_n_steps=1,
max_epochs=1000,
detect_anomaly=True,
)
# Training loop

View File

@ -1,12 +1,23 @@
"""Median-LVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import MedianLVQ, VisGLVQ2D
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -16,13 +27,13 @@ if __name__ == "__main__":
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(
train_loader = DataLoader(
train_ds,
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
)
# Initialize the model
model = pt.models.MedianLVQ(
model = MedianLVQ(
hparams=dict(distribution=(3, 2), lr=0.01),
prototypes_initializer=pt.initializers.SSCI(train_ds),
)
@ -31,8 +42,8 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
vis = VisGLVQ2D(data=train_ds)
es = EarlyStopping(
monitor="train_acc",
min_delta=0.01,
patience=5,
@ -44,8 +55,13 @@ if __name__ == "__main__":
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis, es],
weights_summary="full",
callbacks=[
vis,
es,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,15 +1,26 @@
"""Neural Gas example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import NeuralGas, VisNG2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -17,7 +28,7 @@ if __name__ == "__main__":
# Prepare and pre-process the dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
x_train = x_train[:, 0:3:2]
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
@ -25,7 +36,7 @@ if __name__ == "__main__":
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
@ -35,7 +46,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.NeuralGas(
model = NeuralGas(
hparams,
prototypes_initializer=pt.core.ZCI(2),
lr_scheduler=ExponentialLR,
@ -45,17 +56,18 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisNG2D(data=train_ds)
vis = VisNG2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,10 +1,18 @@
"""RSLVQ example using the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import RSLVQ, VisGLVQ2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
if __name__ == "__main__":
# Command-line arguments
@ -13,13 +21,13 @@ if __name__ == "__main__":
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
seed_everything(seed=42)
# Dataset
train_ds = pt.datasets.Iris(dims=[0, 2])
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64)
# Hyperparameters
hparams = dict(
@ -33,7 +41,7 @@ if __name__ == "__main__":
)
# Initialize the model
model = pt.models.RSLVQ(
model = RSLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
@ -42,19 +50,18 @@ if __name__ == "__main__":
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
vis = VisGLVQ2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
terminate_on_nan=True,
weights_summary="full",
accelerator="ddp",
callbacks=[
vis,
],
detect_anomaly=True,
max_epochs=100,
log_every_n_steps=1,
)
# Training loop

View File

@ -1,10 +1,18 @@
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
@ -34,10 +42,10 @@ if __name__ == "__main__":
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(
@ -50,23 +58,25 @@ if __name__ == "__main__":
backbone = Backbone()
# Initialize the model
model = pt.models.SiameseGLVQ(
model = SiameseGLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,10 +1,18 @@
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
warnings.filterwarnings("ignore", category=UserWarning)
class Backbone(torch.nn.Module):
@ -34,39 +42,43 @@ if __name__ == "__main__":
train_ds = pt.datasets.Iris()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
seed_everything(seed=2)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
train_loader = DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(distribution=[1, 2, 3],
proto_lr=0.01,
bb_lr=0.01,
input_dim=2,
latent_dim=1)
hparams = dict(
distribution=[1, 2, 3],
proto_lr=0.01,
bb_lr=0.01,
input_dim=2,
latent_dim=1,
)
# Initialize the backbone
backbone = Backbone(latent_size=hparams["input_dim"])
# Initialize the model
model = pt.models.SiameseGTLVQ(
model = SiameseGTLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
backbone=backbone,
both_path_gradients=False,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
callbacks=[
vis,
],
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop

View File

@ -1,13 +1,30 @@
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
import argparse
import warnings
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.models import (
GLVQ,
KNN,
GrowingNeuralGas,
PruneLoserPrototypes,
VisGLVQ2D,
)
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.utilities.warnings import PossibleUserWarning
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
warnings.filterwarnings("ignore", category=PossibleUserWarning)
if __name__ == "__main__":
# Reproducibility
seed_everything(seed=4)
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
@ -15,10 +32,10 @@ if __name__ == "__main__":
# Prepare the data
train_ds = pt.datasets.Iris(dims=[0, 2])
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
# Initialize the gng
gng = pt.models.GrowingNeuralGas(
gng = GrowingNeuralGas(
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
prototypes_initializer=pt.initializers.ZCI(2),
lr_scheduler=ExponentialLR,
@ -26,7 +43,7 @@ if __name__ == "__main__":
)
# Callbacks
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="loss",
min_delta=0.001,
patience=20,
@ -37,9 +54,12 @@ if __name__ == "__main__":
# Setup trainer for GNG
trainer = pl.Trainer(
max_epochs=100,
callbacks=[es],
weights_summary=None,
max_epochs=1000,
callbacks=[
es,
],
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop
@ -52,12 +72,12 @@ if __name__ == "__main__":
)
# Warm-start prototypes
knn = pt.models.KNN(dict(k=1), data=train_ds)
knn = KNN(dict(k=1), data=train_ds)
prototypes = gng.prototypes
plabels = knn.predict(prototypes)
# Initialize the model
model = pt.models.GLVQ(
model = GLVQ(
hparams,
optimizer=torch.optim.Adam,
prototypes_initializer=pt.initializers.LCI(prototypes),
@ -70,15 +90,15 @@ if __name__ == "__main__":
model.example_input_array = torch.zeros(4, 2)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
pruning = pt.models.PruneLoserPrototypes(
vis = VisGLVQ2D(data=train_ds)
pruning = PruneLoserPrototypes(
threshold=0.02,
idle_epochs=2,
prune_quota_per_epoch=5,
frequency=1,
verbose=True,
)
es = pl.callbacks.EarlyStopping(
es = EarlyStopping(
monitor="train_loss",
min_delta=0.001,
patience=10,
@ -95,8 +115,9 @@ if __name__ == "__main__":
pruning,
es,
],
weights_summary="full",
accelerator="ddp",
max_epochs=1000,
log_every_n_steps=1,
detect_anomaly=True,
)
# Training loop