Update example scripts

This commit is contained in:
Jensun Ravichandran 2021-05-07 15:25:04 +02:00
parent d7972a69e8
commit 728131e9db
7 changed files with 83 additions and 183 deletions

View File

@ -1,102 +1,36 @@
"""CBC example using the Iris dataset."""
import numpy as np
import prototorch as pt
import pytorch_lightning as pl
import torch
from matplotlib import pyplot as plt
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
from prototorch.models.cbc import CBC, euclidean_similarity
class VisualizationCallback(pl.Callback):
def __init__(
self,
x_train,
y_train,
prototype_model=True,
title="Prototype Visualization",
cmap="viridis",
):
super().__init__()
self.x_train = x_train
self.y_train = y_train
self.title = title
self.fig = plt.figure(self.title)
self.cmap = cmap
self.prototype_model = prototype_model
def on_epoch_end(self, trainer, pl_module):
if self.prototype_model:
protos = pl_module.components
color = pl_module.prototype_labels
else:
protos = pl_module.components
color = "k"
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c=color,
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50,
)
x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
plt.pause(0.1)
if __name__ == "__main__":
# Dataset
from sklearn.datasets import load_iris
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = NumpyDataset(x_train, y_train)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(
input_dim=x_train.shape[1],
nclasses=len(np.unique(y_train)),
nclasses=3,
num_components=9,
component_initializer=cinit.StratifiedMeanInitializer(
torch.Tensor(x_train), torch.Tensor(y_train)),
component_initializer=pt.components.SMI(train_ds),
lr=0.01,
)
# Initialize the model
model = CBC(
hparams,
data=[x_train, y_train],
similarity=euclidean_similarity,
)
model = pt.models.CBC(hparams)
# Callbacks
dvis = VisualizationCallback(x_train,
y_train,
prototype_model=False,
title="CBC Iris Example")
dvis = pt.models.VisCBC2D(data=(x_train, y_train),
title="CBC Iris Example")
# Setup trainer
trainer = pl.Trainer(

View File

@ -1,40 +1,39 @@
"""GLVQ example using the Iris dataset."""
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisGLVQ2D
from prototorch.models.glvq import GLVQ
if __name__ == "__main__":
# Dataset
from sklearn.datasets import load_iris
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = NumpyDataset(x_train, y_train)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(
nclasses=3,
prototypes_per_class=2,
prototype_initializer=cinit.StratifiedMeanInitializer(
torch.Tensor(x_train), torch.Tensor(y_train)),
prototype_initializer=pt.components.SMI(train_ds),
lr=0.01,
)
# Initialize the model
model = GLVQ(hparams)
model = pt.models.GLVQ(hparams)
# Callbacks
vis = pt.models.VisGLVQ2D(data=(x_train, y_train))
# Setup trainer
trainer = pl.Trainer(
max_epochs=50,
callbacks=[VisGLVQ2D(x_train, y_train)],
callbacks=[vis],
)
# Training loop

View File

@ -1,14 +1,8 @@
"""GLVQ example using the spiral dataset."""
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from prototorch.datasets.spiral import make_spiral
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisGLVQ2D
from prototorch.models.glvq import GLVQ
class StopOnNaN(pl.Callback):
@ -23,29 +17,28 @@ class StopOnNaN(pl.Callback):
if __name__ == "__main__":
# Dataset
x_train, y_train = make_spiral(n_samples=600, noise=0.6)
train_ds = NumpyDataset(x_train, y_train)
train_ds = pt.datasets.Spiral(n_samples=600, noise=0.6)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=256)
# Hyperparameters
hparams = dict(
nclasses=2,
prototypes_per_class=20,
prototype_initializer=cinit.SSI(torch.Tensor(x_train),
torch.Tensor(y_train),
noise=1e-7),
prototype_initializer=pt.components.SSI(train_ds, noise=1e-7),
transfer_function="sigmoid_beta",
transfer_beta=10.0,
lr=0.01,
)
# Initialize the model
model = GLVQ(hparams)
model = pt.models.GLVQ(hparams)
# Callbacks
vis = VisGLVQ2D(x_train, y_train, show_last_only=True, block=True)
vis = pt.models.VisGLVQ2D(train_ds, show_last_only=True, block=True)
snan = StopOnNaN(model.proto_layer.components)
# Setup trainer

View File

@ -1,48 +1,37 @@
"""GMLVQ example using all four dimensions of the Iris dataset."""
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
from prototorch.models.glvq import GMLVQ
if __name__ == "__main__":
# Dataset
from sklearn.datasets import load_iris
x_train, y_train = load_iris(return_X_y=True)
train_ds = NumpyDataset(x_train, y_train)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(
nclasses=3,
prototypes_per_class=1,
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
torch.Tensor(y_train)),
input_dim=x_train.shape[1],
latent_dim=2,
latent_dim=x_train.shape[1],
prototype_initializer=pt.components.SMI(train_ds),
lr=0.01,
)
# Initialize the model
model = GMLVQ(hparams)
# Model summary
print(model)
# Callbacks
vis = VisSiameseGLVQ2D(x_train, y_train)
# Namespace hook for the visualization to work
model.backbone = model.omega_layer
model = pt.models.GMLVQ(hparams)
# Setup trainer
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
trainer = pl.Trainer(max_epochs=100)
# Training loop
trainer.fit(model, train_loader)
# Display the Lambda matrix
model.show_lambda()

View File

@ -1,47 +1,45 @@
"""Limited Rank MLVQ example using the Tecator dataset."""
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
import prototorch as pt
import pytorch_lightning as pl
from prototorch.components import initializers as cinit
from prototorch.datasets.tecator import Tecator
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
from prototorch.models.glvq import GMLVQ
import torch
if __name__ == "__main__":
# Dataset
train_ds = Tecator(root="./datasets/", train=True)
train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
# Reproducibility
pl.utilities.seed.seed_everything(seed=42)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=32)
# Grab the full dataset to warm-start prototypes
x, y = next(iter(DataLoader(train_ds, batch_size=len(train_ds))))
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=32)
# Hyperparameters
hparams = dict(
nclasses=2,
prototypes_per_class=2,
prototype_initializer=cinit.SMI(x, y),
input_dim=x.shape[1],
input_dim=100,
latent_dim=2,
lr=0.01,
prototype_initializer=pt.components.SMI(train_ds),
lr=0.001,
)
# Initialize the model
model = GMLVQ(hparams)
model = pt.models.GMLVQ(hparams)
# Model summary
print(model)
# Callbacks
vis = VisSiameseGLVQ2D(x, y)
vis = pt.models.VisSiameseGLVQ2D(train_ds, border=0.1)
# Namespace hook for the visualization to work
model.backbone = model.omega_layer
# Setup trainer
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
trainer = pl.Trainer(max_epochs=200, callbacks=[vis])
# Training loop
trainer.fit(model, train_loader)

View File

@ -1,50 +1,40 @@
"""Neural Gas example using the Iris dataset."""
import prototorch as pt
import pytorch_lightning as pl
from prototorch.datasets.abstract import NumpyDataset
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torch.utils.data import DataLoader
from prototorch.models.callbacks.visualization import VisNG2D
from prototorch.models.neural_gas import NeuralGas
import torch
if __name__ == "__main__":
# Dataset
# Prepare and pre-process the dataset
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
train_ds = NumpyDataset(x_train, y_train)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(
input_dim=x_train.shape[1],
num_prototypes=30,
lr=0.01,
)
hparams = dict(num_prototypes=30, lr=0.03)
# Initialize the model
model = NeuralGas(hparams)
model = pt.models.NeuralGas(hparams)
# Model summary
print(model)
# Callbacks
vis = VisNG2D(x_train, y_train)
vis = pt.models.VisNG2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer(
max_epochs=100,
callbacks=[
vis,
],
)
trainer = pl.Trainer(max_epochs=200, callbacks=[vis])
# Training loop
trainer.fit(model, train_loader)

View File

@ -1,13 +1,8 @@
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
import prototorch as pt
import pytorch_lightning as pl
import torch
from prototorch.components import initializers as cinit
from prototorch.datasets.abstract import NumpyDataset
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
from prototorch.models.glvq import SiameseGLVQ
from sklearn.datasets import load_iris
from torch.utils.data import DataLoader
class Backbone(torch.nn.Module):
@ -29,27 +24,29 @@ class Backbone(torch.nn.Module):
if __name__ == "__main__":
# Dataset
from sklearn.datasets import load_iris
x_train, y_train = load_iris(return_X_y=True)
train_ds = NumpyDataset(x_train, y_train)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
# Dataloaders
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(
nclasses=3,
prototypes_per_class=2,
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
torch.Tensor(y_train)),
prototype_initializer=pt.components.SMI((x_train, y_train)),
proto_lr=0.001,
bb_lr=0.001,
)
# Initialize the model
model = SiameseGLVQ(
model = pt.models.SiameseGLVQ(
hparams,
backbone_module=Backbone,
)
@ -58,7 +55,7 @@ if __name__ == "__main__":
print(model)
# Callbacks
vis = VisSiameseGLVQ2D(x_train, y_train, border=0.1)
vis = pt.models.VisSiameseGLVQ2D(data=(x_train, y_train), border=0.1)
# Setup trainer
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])