Add mnist example
This commit is contained in:
parent
984840d262
commit
7263dfed91
44
examples/glvq_mnist.py
Normal file
44
examples/glvq_mnist.py
Normal file
@ -0,0 +1,44 @@
|
||||
import pytorch_lightning as pl
|
||||
import torchvision
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.functions.initializers import stratified_mean
|
||||
from prototorch.models.glvq import ImageGLVQ
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
|
||||
def plot_protos(protos, shape=(-1, 1, 28, 28), nrow=2):
|
||||
grid = torchvision.utils.make_grid(protos.reshape(*shape), nrow=nrow)
|
||||
grid = grid.permute((1, 2, 0))
|
||||
plt.imshow(grid)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = MNIST("./datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.ToTensor())
|
||||
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
|
||||
|
||||
train_loader = DataLoader(mnist_train, batch_size=1024)
|
||||
val_loader = DataLoader(mnist_val, batch_size=1024)
|
||||
|
||||
model = ImageGLVQ(input_dim=28 * 28, nclasses=10, prototypes_per_class=2)
|
||||
|
||||
# Warm-start prototypes
|
||||
prototypes, prototype_labels = stratified_mean(
|
||||
x_train,
|
||||
y_train,
|
||||
prototype_distribution=self.prototype_distribution,
|
||||
one_hot=one_hot_labels,
|
||||
)
|
||||
|
||||
trainer = pl.Trainer(gpus=0, max_epochs=3)
|
||||
|
||||
trainer.fit(model, train_loader, val_loader)
|
||||
|
||||
protos = model.proto_layer.prototypes.detach().cpu()
|
||||
plot_protos(protos, shape=(-1, 1, 28, 28), nrow=4)
|
||||
plt.show(block=True)
|
Loading…
Reference in New Issue
Block a user