Move and improve visualization callbacks
This commit is contained in:
parent
f2541acde9
commit
5f937066bf
@ -9,6 +9,7 @@ from prototorch.utils.celluloid import Camera
|
||||
from prototorch.utils.colors import color_scheme
|
||||
from prototorch.utils.utils import (gif_from_dir, make_directory,
|
||||
prettify_string)
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
|
||||
class VisWeights(pl.Callback):
|
||||
@ -263,25 +264,54 @@ class VisPointProtos(VisWeights):
|
||||
|
||||
class Vis2DAbstract(pl.Callback):
|
||||
def __init__(self,
|
||||
x_train,
|
||||
y_train,
|
||||
data,
|
||||
title="Prototype Visualization",
|
||||
cmap="viridis",
|
||||
border=1,
|
||||
resolution=50,
|
||||
tensorboard=False,
|
||||
show_last_only=False,
|
||||
pause_time=0.1,
|
||||
block=False):
|
||||
super().__init__()
|
||||
self.x_train = x_train
|
||||
self.y_train = y_train
|
||||
|
||||
if isinstance(data, Dataset):
|
||||
x, y = next(iter(DataLoader(data, batch_size=len(data))))
|
||||
x = x.view(len(data), -1) # flatten
|
||||
else:
|
||||
x, y = data
|
||||
self.x_train = x
|
||||
self.y_train = y
|
||||
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.cmap = cmap
|
||||
self.border = border
|
||||
self.resolution = resolution
|
||||
self.tensorboard = tensorboard
|
||||
self.show_last_only = show_last_only
|
||||
self.pause_time = pause_time
|
||||
self.block = block
|
||||
|
||||
def setup_ax(self, xlabel=None, ylabel=None):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.axis("off")
|
||||
if xlabel:
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
if ylabel:
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
return ax
|
||||
|
||||
def get_mesh_input(self, x):
|
||||
x_min, x_max = x[:, 0].min() - self.border, x[:, 0].max() + self.border
|
||||
y_min, y_max = x[:, 1].min() - self.border, x[:, 1].max() + self.border
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / self.resolution),
|
||||
np.arange(y_min, y_max, 1 / self.resolution))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
return mesh_input, xx, yy
|
||||
|
||||
def add_to_tensorboard(self, trainer, pl_module):
|
||||
tb = pl_module.logger.experiment
|
||||
tb.add_figure(tag=f"{self.title}",
|
||||
@ -289,6 +319,14 @@ class Vis2DAbstract(pl.Callback):
|
||||
global_step=trainer.current_epoch,
|
||||
close=False)
|
||||
|
||||
def log_and_display(self, trainer, pl_module):
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if not self.block:
|
||||
plt.pause(self.pause_time)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
@ -298,12 +336,8 @@ class VisGLVQ2D(Vis2DAbstract):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.axis("off")
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
@ -315,23 +349,15 @@ class VisGLVQ2D(Vis2DAbstract):
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
|
||||
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if not self.block:
|
||||
plt.pause(0.01)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
# ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
# ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
@ -341,10 +367,7 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
x_train = pl_module.backbone(torch.Tensor(x_train)).detach()
|
||||
protos = pl_module.backbone(torch.Tensor(protos)).detach()
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.axis("off")
|
||||
ax = self.setup_ax()
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
@ -356,48 +379,54 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
x_min, x_max = x[:, 0].min() - self.border, x[:, 0].max() + self.border
|
||||
y_min, y_max = x[:, 1].min() - self.border, x[:, 1].max() + self.border
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
|
||||
np.arange(y_min, y_max, 1 / 50))
|
||||
mesh_input = np.c_[xx.ravel(), yy.ravel()]
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
y_pred = pl_module.predict_latent(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
tb = pl_module.logger.experiment
|
||||
tb.add_figure(
|
||||
tag=f"{self.title}",
|
||||
figure=self.fig,
|
||||
global_step=trainer.current_epoch,
|
||||
close=False,
|
||||
)
|
||||
# ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
# ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if not self.block:
|
||||
plt.pause(0.05)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisCBC2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.components
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
c="w",
|
||||
cmap=self.cmap,
|
||||
edgecolor="k",
|
||||
marker="D",
|
||||
s=50,
|
||||
)
|
||||
x = np.vstack((x_train, protos))
|
||||
mesh_input, xx, yy = self.get_mesh_input(x)
|
||||
y_pred = pl_module.predict(torch.Tensor(mesh_input))
|
||||
y_pred = y_pred.reshape(xx.shape)
|
||||
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
# ax.set_xlim(left=x_min + 0, right=x_max - 0)
|
||||
# ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
|
||||
|
||||
self.log_and_display(trainer, pl_module)
|
||||
|
||||
|
||||
class VisNG2D(Vis2DAbstract):
|
||||
def on_epoch_end(self, trainer, pl_module):
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
protos = pl_module.prototypes
|
||||
cmat = pl_module.topology_layer.cmat.cpu().numpy()
|
||||
|
||||
# Visualize the data and the prototypes
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
ax.set_xlabel("Data dimension 1")
|
||||
ax.set_ylabel("Data dimension 2")
|
||||
ax.scatter(self.x_train[:, 0],
|
||||
self.x_train[:, 1],
|
||||
c=self.y_train,
|
||||
edgecolor="k")
|
||||
ax = self.setup_ax(xlabel="Data dimension 1",
|
||||
ylabel="Data dimension 2")
|
||||
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
|
||||
ax.scatter(
|
||||
protos[:, 0],
|
||||
protos[:, 1],
|
||||
@ -417,9 +446,4 @@ class VisNG2D(Vis2DAbstract):
|
||||
"k-",
|
||||
)
|
||||
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if not self.block:
|
||||
plt.pause(0.01)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
self.log_and_display(trainer, pl_module)
|
Loading…
Reference in New Issue
Block a user