Move and improve visualization callbacks

This commit is contained in:
Jensun Ravichandran 2021-05-07 15:22:54 +02:00
parent f2541acde9
commit 5f937066bf

View File

@ -9,6 +9,7 @@ from prototorch.utils.celluloid import Camera
from prototorch.utils.colors import color_scheme from prototorch.utils.colors import color_scheme
from prototorch.utils.utils import (gif_from_dir, make_directory, from prototorch.utils.utils import (gif_from_dir, make_directory,
prettify_string) prettify_string)
from torch.utils.data import DataLoader, Dataset
class VisWeights(pl.Callback): class VisWeights(pl.Callback):
@ -263,25 +264,54 @@ class VisPointProtos(VisWeights):
class Vis2DAbstract(pl.Callback): class Vis2DAbstract(pl.Callback):
def __init__(self, def __init__(self,
x_train, data,
y_train,
title="Prototype Visualization", title="Prototype Visualization",
cmap="viridis", cmap="viridis",
border=1, border=1,
resolution=50,
tensorboard=False, tensorboard=False,
show_last_only=False, show_last_only=False,
pause_time=0.1,
block=False): block=False):
super().__init__() super().__init__()
self.x_train = x_train
self.y_train = y_train if isinstance(data, Dataset):
x, y = next(iter(DataLoader(data, batch_size=len(data))))
x = x.view(len(data), -1) # flatten
else:
x, y = data
self.x_train = x
self.y_train = y
self.title = title self.title = title
self.fig = plt.figure(self.title) self.fig = plt.figure(self.title)
self.cmap = cmap self.cmap = cmap
self.border = border self.border = border
self.resolution = resolution
self.tensorboard = tensorboard self.tensorboard = tensorboard
self.show_last_only = show_last_only self.show_last_only = show_last_only
self.pause_time = pause_time
self.block = block self.block = block
def setup_ax(self, xlabel=None, ylabel=None):
ax = self.fig.gca()
ax.cla()
ax.set_title(self.title)
ax.axis("off")
if xlabel:
ax.set_xlabel("Data dimension 1")
if ylabel:
ax.set_ylabel("Data dimension 2")
return ax
def get_mesh_input(self, x):
x_min, x_max = x[:, 0].min() - self.border, x[:, 0].max() + self.border
y_min, y_max = x[:, 1].min() - self.border, x[:, 1].max() + self.border
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / self.resolution),
np.arange(y_min, y_max, 1 / self.resolution))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
return mesh_input, xx, yy
def add_to_tensorboard(self, trainer, pl_module): def add_to_tensorboard(self, trainer, pl_module):
tb = pl_module.logger.experiment tb = pl_module.logger.experiment
tb.add_figure(tag=f"{self.title}", tb.add_figure(tag=f"{self.title}",
@ -289,6 +319,14 @@ class Vis2DAbstract(pl.Callback):
global_step=trainer.current_epoch, global_step=trainer.current_epoch,
close=False) close=False)
def log_and_display(self, trainer, pl_module):
if self.tensorboard:
self.add_to_tensorboard(trainer, pl_module)
if not self.block:
plt.pause(self.pause_time)
else:
plt.show(block=True)
class VisGLVQ2D(Vis2DAbstract): class VisGLVQ2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module): def on_epoch_end(self, trainer, pl_module):
@ -298,12 +336,8 @@ class VisGLVQ2D(Vis2DAbstract):
protos = pl_module.prototypes protos = pl_module.prototypes
plabels = pl_module.prototype_labels plabels = pl_module.prototype_labels
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
ax = self.fig.gca() ax = self.setup_ax(xlabel="Data dimension 1",
ax.cla() ylabel="Data dimension 2")
ax.set_title(self.title)
ax.axis("off")
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter( ax.scatter(
protos[:, 0], protos[:, 0],
@ -315,23 +349,15 @@ class VisGLVQ2D(Vis2DAbstract):
s=50, s=50,
) )
x = np.vstack((x_train, protos)) x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 mesh_input, xx, yy = self.get_mesh_input(x)
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = pl_module.predict(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape) y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0) # ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0) # ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
if self.tensorboard:
self.add_to_tensorboard(trainer, pl_module) self.log_and_display(trainer, pl_module)
if not self.block:
plt.pause(0.01)
else:
plt.show(block=True)
class VisSiameseGLVQ2D(Vis2DAbstract): class VisSiameseGLVQ2D(Vis2DAbstract):
@ -341,10 +367,7 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
x_train, y_train = self.x_train, self.y_train x_train, y_train = self.x_train, self.y_train
x_train = pl_module.backbone(torch.Tensor(x_train)).detach() x_train = pl_module.backbone(torch.Tensor(x_train)).detach()
protos = pl_module.backbone(torch.Tensor(protos)).detach() protos = pl_module.backbone(torch.Tensor(protos)).detach()
ax = self.fig.gca() ax = self.setup_ax()
ax.cla()
ax.set_title(self.title)
ax.axis("off")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter( ax.scatter(
protos[:, 0], protos[:, 0],
@ -356,48 +379,54 @@ class VisSiameseGLVQ2D(Vis2DAbstract):
s=50, s=50,
) )
x = np.vstack((x_train, protos)) x = np.vstack((x_train, protos))
x_min, x_max = x[:, 0].min() - self.border, x[:, 0].max() + self.border mesh_input, xx, yy = self.get_mesh_input(x)
y_min, y_max = x[:, 1].min() - self.border, x[:, 1].max() + self.border
xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50),
np.arange(y_min, y_max, 1 / 50))
mesh_input = np.c_[xx.ravel(), yy.ravel()]
y_pred = pl_module.predict_latent(torch.Tensor(mesh_input)) y_pred = pl_module.predict_latent(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape) y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
ax.set_xlim(left=x_min + 0, right=x_max - 0) # ax.set_xlim(left=x_min + 0, right=x_max - 0)
ax.set_ylim(bottom=y_min + 0, top=y_max - 0) # ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
tb = pl_module.logger.experiment
tb.add_figure(
tag=f"{self.title}",
figure=self.fig,
global_step=trainer.current_epoch,
close=False,
)
if self.tensorboard: self.log_and_display(trainer, pl_module)
self.add_to_tensorboard(trainer, pl_module)
if not self.block:
plt.pause(0.05) class VisCBC2D(Vis2DAbstract):
else: def on_epoch_end(self, trainer, pl_module):
plt.show(block=True) x_train, y_train = self.x_train, self.y_train
protos = pl_module.components
ax = self.setup_ax(xlabel="Data dimension 1",
ylabel="Data dimension 2")
ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.scatter(
protos[:, 0],
protos[:, 1],
c="w",
cmap=self.cmap,
edgecolor="k",
marker="D",
s=50,
)
x = np.vstack((x_train, protos))
mesh_input, xx, yy = self.get_mesh_input(x)
y_pred = pl_module.predict(torch.Tensor(mesh_input))
y_pred = y_pred.reshape(xx.shape)
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
# ax.set_xlim(left=x_min + 0, right=x_max - 0)
# ax.set_ylim(bottom=y_min + 0, top=y_max - 0)
self.log_and_display(trainer, pl_module)
class VisNG2D(Vis2DAbstract): class VisNG2D(Vis2DAbstract):
def on_epoch_end(self, trainer, pl_module): def on_epoch_end(self, trainer, pl_module):
x_train, y_train = self.x_train, self.y_train
protos = pl_module.prototypes protos = pl_module.prototypes
cmat = pl_module.topology_layer.cmat.cpu().numpy() cmat = pl_module.topology_layer.cmat.cpu().numpy()
# Visualize the data and the prototypes ax = self.setup_ax(xlabel="Data dimension 1",
ax = self.fig.gca() ylabel="Data dimension 2")
ax.cla() ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k")
ax.set_title(self.title)
ax.set_xlabel("Data dimension 1")
ax.set_ylabel("Data dimension 2")
ax.scatter(self.x_train[:, 0],
self.x_train[:, 1],
c=self.y_train,
edgecolor="k")
ax.scatter( ax.scatter(
protos[:, 0], protos[:, 0],
protos[:, 1], protos[:, 1],
@ -417,9 +446,4 @@ class VisNG2D(Vis2DAbstract):
"k-", "k-",
) )
if self.tensorboard: self.log_and_display(trainer, pl_module)
self.add_to_tensorboard(trainer, pl_module)
if not self.block:
plt.pause(0.01)
else:
plt.show(block=True)