All examples use argparse
This commit is contained in:
parent
b60db3174a
commit
5b12629bd9
@ -1,10 +1,17 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
@ -30,18 +37,15 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
dvis = pt.models.VisCBC2D(data=train_ds,
|
||||
vis = pt.models.VisCBC2D(data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=300,
|
||||
axis_off=True)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
gpus=0,
|
||||
max_epochs=200,
|
||||
callbacks=[
|
||||
dvis,
|
||||
],
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@ -1,12 +1,19 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
@ -33,9 +40,8 @@ if __name__ == "__main__":
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train), block=False)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
gpus=0,
|
||||
max_epochs=50,
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
|
@ -1,11 +1,17 @@
|
||||
"""GLVQ example using the spiral dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models.callbacks import StopOnNaN
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Spiral(n_samples=600, noise=0.6)
|
||||
|
||||
@ -31,13 +37,12 @@ if __name__ == "__main__":
|
||||
|
||||
# Callbacks
|
||||
vis = pt.models.VisGLVQ2D(train_ds, show_last_only=True, block=True)
|
||||
snan = StopOnNaN(model.proto_layer.components)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
gpus=0,
|
||||
max_epochs=200,
|
||||
callbacks=[vis, snan],
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
terminate_on_nan=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@ -1,12 +1,19 @@
|
||||
"""GMLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
@ -30,7 +37,7 @@ if __name__ == "__main__":
|
||||
prototype_initializer=pt.components.SMI(train_ds))
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, gpus=0)
|
||||
trainer = pl.Trainer.from_argparse_args(args, )
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
@ -74,10 +74,6 @@ if __name__ == "__main__":
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
# kwargs override the cli-arguments
|
||||
# max_epochs=50,
|
||||
# overfit_batches=1,
|
||||
# fast_dev_run=1,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@ -1,12 +1,19 @@
|
||||
"""k-NN example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
from sklearn.datasets import load_iris
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
@ -26,7 +33,10 @@ if __name__ == "__main__":
|
||||
vis = pt.models.VisGLVQ2D(data=(x_train, y_train), resolution=200)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=1, callbacks=[vis], gpus=0)
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
# This is only for visualization. k-NN has no training phase.
|
||||
|
@ -1,10 +1,17 @@
|
||||
"""Limited Rank Matrix LVQ example using the Tecator dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Tecator(root="~/datasets/", train=True)
|
||||
test_ds = pt.datasets.Tecator(root="~/datasets/", train=False)
|
||||
@ -40,11 +47,9 @@ if __name__ == "__main__":
|
||||
mode="min")
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(
|
||||
gpus=0,
|
||||
max_epochs=100,
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis, es],
|
||||
weights_summary=None,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
|
@ -1,12 +1,33 @@
|
||||
"""LVQMLN example using all four dimensions of the Iris dataset."""
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
|
||||
from siamese_glvq_iris import Backbone
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
@ -48,7 +69,10 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis], gpus=0)
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
@ -1,13 +1,20 @@
|
||||
"""Neural Gas example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare and pre-process the dataset
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, [0, 2]]
|
||||
scaler = StandardScaler()
|
||||
@ -34,7 +41,10 @@ if __name__ == "__main__":
|
||||
vis = pt.models.VisNG2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(gpus=0, max_epochs=200, callbacks=[vis])
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
@ -1,5 +1,7 @@
|
||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
@ -22,6 +24,11 @@ class Backbone(torch.nn.Module):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
@ -58,7 +65,10 @@ if __name__ == "__main__":
|
||||
vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer(max_epochs=100, callbacks=[vis], gpus=0)
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[vis],
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
Loading…
Reference in New Issue
Block a user