feat: remove old architecture
This commit is contained in:
parent
bcf9c6bdb1
commit
5a89f24c10
@ -1,67 +0,0 @@
|
||||
"""CBC example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
from prototorch.models import CBC, VisCBC2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=32)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 0, 3],
|
||||
margin=0.1,
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = CBC(
|
||||
hparams,
|
||||
components_initializer=pt.initializers.SSCI(train_ds, noise=0.1),
|
||||
reasonings_initializer=pt.initializers.
|
||||
PurePositiveReasoningsInitializer(),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisCBC2D(
|
||||
data=train_ds,
|
||||
title="CBC Iris Example",
|
||||
resolution=100,
|
||||
axis_off=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
detect_anomaly=True,
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,99 +0,0 @@
|
||||
"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import (
|
||||
CELVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
num_classes = 4
|
||||
num_features = 2
|
||||
num_clusters = 1
|
||||
train_ds = pt.datasets.Random(
|
||||
num_samples=500,
|
||||
num_classes=num_classes,
|
||||
num_features=num_features,
|
||||
num_clusters=num_clusters,
|
||||
separation=3.0,
|
||||
seed=42,
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
prototypes_per_class = num_clusters * 5
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
lr=0.2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = CELVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.FVCI(2, 3.0),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(train_ds)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01, # prune prototype if it wins less than 1%
|
||||
idle_epochs=20, # pruning too early may cause problems
|
||||
prune_quota_per_epoch=2, # prune at most 2 prototypes per epoch
|
||||
frequency=1, # prune every epoch
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
detect_anomaly=True,
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,79 +0,0 @@
|
||||
"""GLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import GLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=64, num_workers=4)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"per_class": 4
|
||||
},
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=100,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Manual save
|
||||
trainer.save_checkpoint("./glvq_iris.ckpt")
|
||||
|
||||
# Load saved model
|
||||
new_model = GLVQ.load_from_checkpoint(
|
||||
checkpoint_path="./glvq_iris.ckpt",
|
||||
strict=False,
|
||||
)
|
||||
logging.info(new_model)
|
@ -1,73 +1,134 @@
|
||||
"""GMLVQ example using the Iris dataset."""
|
||||
import logging
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import GMLVQ, VisGMLVQ2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
import torchmetrics
|
||||
from prototorch.core import SMCI
|
||||
from prototorch.datasets import Iris
|
||||
from prototorch.models.architectures.base import Steps
|
||||
from prototorch.models.callbacks import (
|
||||
LogTorchmetricCallback,
|
||||
PlotLambdaMatrixToTensorboard,
|
||||
VisGMLVQ2D,
|
||||
)
|
||||
from prototorch.models.library.gmlvq import GMLVQ
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# ##############################################################################
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
def main():
|
||||
# ------------------------------------------------------------
|
||||
# DATA
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
full_dataset = Iris()
|
||||
full_count = len(full_dataset)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=64)
|
||||
train_count = int(full_count * 0.5)
|
||||
val_count = int(full_count * 0.4)
|
||||
test_count = int(full_count * 0.1)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
train_dataset, val_dataset, test_dataset = random_split(
|
||||
full_dataset, (train_count, val_count, test_count))
|
||||
|
||||
# Dataloader
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
shuffle=True,
|
||||
)
|
||||
val_loader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
shuffle=False,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
batch_size=1,
|
||||
num_workers=0,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# HYPERPARAMETERS
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Select Initializer
|
||||
components_initializer = SMCI(full_dataset)
|
||||
|
||||
# Define Hyperparameters
|
||||
hyperparameters = GMLVQ.HyperParameters(
|
||||
lr=dict(components_layer=0.1, _omega=0),
|
||||
input_dim=4,
|
||||
latent_dim=4,
|
||||
distribution={
|
||||
"num_classes": 3,
|
||||
"per_class": 2
|
||||
},
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
distribution=dict(
|
||||
num_classes=3,
|
||||
per_class=1,
|
||||
),
|
||||
component_initializer=components_initializer,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
# Create Model
|
||||
model = GMLVQ(hyperparameters)
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# TRAINING
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Controlling Callbacks
|
||||
recall = LogTorchmetricCallback(
|
||||
'training_recall',
|
||||
torchmetrics.Recall,
|
||||
num_classes=3,
|
||||
step=Steps.TRAINING,
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 4)
|
||||
stopping_criterion = LogTorchmetricCallback(
|
||||
'validation_recall',
|
||||
torchmetrics.Recall,
|
||||
num_classes=3,
|
||||
step=Steps.VALIDATION,
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGMLVQ2D(data=train_ds)
|
||||
es = EarlyStopping(
|
||||
monitor=stopping_criterion.name,
|
||||
mode="max",
|
||||
patience=10,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
# Visualization Callback
|
||||
vis = VisGMLVQ2D(data=full_dataset)
|
||||
|
||||
# Define trainer
|
||||
trainer = pl.Trainer(
|
||||
callbacks=[
|
||||
vis,
|
||||
recall,
|
||||
stopping_criterion,
|
||||
es,
|
||||
PlotLambdaMatrixToTensorboard(),
|
||||
],
|
||||
max_epochs=100,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
||||
# Train
|
||||
trainer.fit(model, train_loader, val_loader)
|
||||
trainer.test(model, test_loader)
|
||||
|
||||
# Manual save
|
||||
trainer.save_checkpoint("./y_arch.ckpt")
|
||||
|
||||
# Load saved model
|
||||
new_model = GMLVQ.load_from_checkpoint(
|
||||
checkpoint_path="./y_arch.ckpt",
|
||||
strict=True,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -1,112 +0,0 @@
|
||||
"""GMLVQ example using the MNIST dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import (
|
||||
ImageGMLVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisImgComp,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
test_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=4, batch_size=256)
|
||||
test_loader = DataLoader(test_ds, num_workers=4, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 10
|
||||
prototypes_per_class = 10
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
latent_dim=28 * 28,
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = ImageGMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisImgComp(
|
||||
data=train_ds,
|
||||
num_columns=10,
|
||||
show=False,
|
||||
tensorboard=True,
|
||||
random_data=100,
|
||||
add_embedding=True,
|
||||
embedding_data=200,
|
||||
flatten_data=False,
|
||||
)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=1,
|
||||
prune_quota_per_epoch=10,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=15,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,94 +0,0 @@
|
||||
"""GMLVQ example using the spiral dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import (
|
||||
GMLVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Spiral(num_samples=500, noise=0.5)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 2
|
||||
prototypes_per_class = 10
|
||||
hparams = dict(
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
transfer_function="swish_beta",
|
||||
transfer_beta=10.0,
|
||||
proto_lr=0.1,
|
||||
bb_lr=0.1,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GMLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-2),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(
|
||||
train_ds,
|
||||
show_last_only=False,
|
||||
block=False,
|
||||
)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=5,
|
||||
replace=True,
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=1e-1),
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=1.0,
|
||||
patience=5,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
pruning,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,65 +0,0 @@
|
||||
"""Growing Neural Gas example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import GrowingNeuralGas, VisNG2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Prepare the data
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
train_loader = DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
num_prototypes=5,
|
||||
input_dim=2,
|
||||
lr=0.1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = GrowingNeuralGas(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Model summary
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisNG2D(data=train_loader)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=100,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,116 +0,0 @@
|
||||
"""GTLVQ example using the MNIST dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import (
|
||||
ImageGTLVQ,
|
||||
PruneLoserPrototypes,
|
||||
VisImgComp,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=True,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
test_ds = MNIST(
|
||||
"~/datasets",
|
||||
train=False,
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
]),
|
||||
)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
|
||||
test_loader = DataLoader(test_ds, num_workers=0, batch_size=256)
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 10
|
||||
prototypes_per_class = 1
|
||||
hparams = dict(
|
||||
input_dim=28 * 28,
|
||||
latent_dim=28,
|
||||
distribution=(num_classes, prototypes_per_class),
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = ImageGTLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
#Use one batch of data for subspace initiator.
|
||||
omega_initializer=pt.initializers.PCALinearTransformInitializer(
|
||||
next(iter(train_loader))[0].reshape(256, 28 * 28)))
|
||||
|
||||
# Callbacks
|
||||
vis = VisImgComp(
|
||||
data=train_ds,
|
||||
num_columns=10,
|
||||
show=False,
|
||||
tensorboard=True,
|
||||
random_data=100,
|
||||
add_embedding=True,
|
||||
embedding_data=200,
|
||||
flatten_data=False,
|
||||
)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=1,
|
||||
prune_quota_per_epoch=10,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=15,
|
||||
mode="min",
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
# using GPUs here is strongly recommended!
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,76 +0,0 @@
|
||||
"""Localized-GTLVQ example using the Moons dataset."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import GTLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(
|
||||
train_ds,
|
||||
batch_size=256,
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
# Hyperparameters
|
||||
# Latent_dim should be lower than input dim.
|
||||
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1)
|
||||
|
||||
# Initialize the model
|
||||
model = GTLVQ(hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds))
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
es = EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="max",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,81 +0,0 @@
|
||||
"""k-NN example using the Iris dataset from scikit-learn."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import KNN, VisGLVQ2D
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X = X[:, 0:3:2]
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X,
|
||||
y,
|
||||
test_size=0.5,
|
||||
random_state=42,
|
||||
)
|
||||
|
||||
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
|
||||
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=16)
|
||||
test_loader = DataLoader(test_ds, batch_size=16)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(k=5)
|
||||
|
||||
# Initialize the model
|
||||
model = KNN(hparams, data=train_ds)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(
|
||||
data=(X_train, y_train),
|
||||
resolution=200,
|
||||
block=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
max_epochs=1,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
# This is only for visualization. k-NN has no training phase.
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
# Recall
|
||||
y_pred = model.predict(torch.tensor(X_train))
|
||||
logging.info(y_pred)
|
||||
|
||||
# Test
|
||||
trainer.test(model, dataloaders=test_loader)
|
@ -1,118 +0,0 @@
|
||||
"""Kohonen Self Organizing Map."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models import KohonenSOM
|
||||
from prototorch.utils.colors import hex_to_rgb
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Vis2DColorSOM(pl.Callback):
|
||||
|
||||
def __init__(self, data, title="ColorSOMe", pause_time=0.1):
|
||||
super().__init__()
|
||||
self.title = title
|
||||
self.fig = plt.figure(self.title)
|
||||
self.data = data
|
||||
self.pause_time = pause_time
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module: KohonenSOM):
|
||||
ax = self.fig.gca()
|
||||
ax.cla()
|
||||
ax.set_title(self.title)
|
||||
h, w = pl_module._grid.shape[:2]
|
||||
protos = pl_module.prototypes.view(h, w, 3)
|
||||
ax.imshow(protos)
|
||||
ax.axis("off")
|
||||
|
||||
# Overlay color names
|
||||
d = pl_module.compute_distances(self.data)
|
||||
wp = pl_module.predict_from_distances(d)
|
||||
for i, iloc in enumerate(wp):
|
||||
plt.text(
|
||||
iloc[1],
|
||||
iloc[0],
|
||||
color_names[i],
|
||||
ha="center",
|
||||
va="center",
|
||||
bbox=dict(facecolor="white", alpha=0.5, lw=0),
|
||||
)
|
||||
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
plt.pause(self.pause_time)
|
||||
else:
|
||||
plt.show(block=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Prepare the data
|
||||
hex_colors = [
|
||||
"#000000", "#0000ff", "#00007f", "#1f86ff", "#5466aa", "#997fff",
|
||||
"#00ff00", "#ff0000", "#00ffff", "#ff00ff", "#ffff00", "#ffffff",
|
||||
"#545454", "#7f7f7f", "#a8a8a8", "#808000", "#800080", "#ffa500"
|
||||
]
|
||||
color_names = [
|
||||
"black", "blue", "darkblue", "skyblue", "greyblue", "lilac", "green",
|
||||
"red", "cyan", "magenta", "yellow", "white", "darkgrey", "mediumgrey",
|
||||
"lightgrey", "olive", "purple", "orange"
|
||||
]
|
||||
colors = list(hex_to_rgb(hex_colors))
|
||||
data = torch.Tensor(colors) / 255.0
|
||||
train_ds = TensorDataset(data)
|
||||
train_loader = DataLoader(train_ds, batch_size=8)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
shape=(18, 32),
|
||||
alpha=1.0,
|
||||
sigma=16,
|
||||
lr=0.1,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = KohonenSOM(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.RNCI(3),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 3)
|
||||
|
||||
# Model summary
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = Vis2DColorSOM(data=data)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
max_epochs=500,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,77 +0,0 @@
|
||||
"""Localized-GMLVQ example using the Moons dataset."""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import LGMLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=256, shuffle=True)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 3],
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = LGMLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Summary
|
||||
logging.info(model)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
es = EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="max",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,103 +0,0 @@
|
||||
"""LVQMLN example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import (
|
||||
LVQMLN,
|
||||
PruneLoserPrototypes,
|
||||
VisSiameseGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[3, 4, 5],
|
||||
proto_lr=0.001,
|
||||
bb_lr=0.001,
|
||||
)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone()
|
||||
|
||||
# Initialize the model
|
||||
model = LVQMLN(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SSCI(
|
||||
train_ds,
|
||||
transform=backbone,
|
||||
),
|
||||
backbone=backbone,
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(
|
||||
data=train_ds,
|
||||
map_protos=False,
|
||||
border=0.1,
|
||||
resolution=500,
|
||||
axis_off=True,
|
||||
)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.01,
|
||||
idle_epochs=20,
|
||||
prune_quota_per_epoch=2,
|
||||
frequency=10,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
max_epochs=1000,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,68 +0,0 @@
|
||||
"""Median-LVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import MedianLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(
|
||||
train_ds,
|
||||
batch_size=len(train_ds), # MedianLVQ cannot handle mini-batches
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = MedianLVQ(
|
||||
hparams=dict(distribution=(3, 2), lr=0.01),
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
es = EarlyStopping(
|
||||
monitor="train_acc",
|
||||
min_delta=0.01,
|
||||
patience=5,
|
||||
mode="max",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,74 +0,0 @@
|
||||
"""Neural Gas example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import NeuralGas, VisNG2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare and pre-process the dataset
|
||||
x_train, y_train = load_iris(return_X_y=True)
|
||||
x_train = x_train[:, 0:3:2]
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(x_train)
|
||||
x_train = scaler.transform(x_train)
|
||||
|
||||
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
num_prototypes=30,
|
||||
input_dim=2,
|
||||
lr=0.03,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = NeuralGas(
|
||||
hparams,
|
||||
prototypes_initializer=pt.core.ZCI(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisNG2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,68 +0,0 @@
|
||||
"""RSLVQ example using the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import RSLVQ, VisGLVQ2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=42)
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=64)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[2, 2, 3],
|
||||
proto_lr=0.05,
|
||||
lambd=0.1,
|
||||
variance=1.0,
|
||||
input_dim=2,
|
||||
latent_dim=2,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the model
|
||||
model = RSLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.SSCI(train_ds, noise=0.2),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
detect_anomaly=True,
|
||||
max_epochs=100,
|
||||
log_every_n_steps=1,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,83 +0,0 @@
|
||||
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import SiameseGLVQ, VisSiameseGLVQ2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 3],
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone()
|
||||
|
||||
# Initialize the model
|
||||
model = SiameseGLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,85 +0,0 @@
|
||||
"""Siamese GTLVQ example using all four dimensions of the Iris dataset."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import SiameseGTLVQ, VisSiameseGLVQ2D
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
class Backbone(torch.nn.Module):
|
||||
|
||||
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.latent_size = latent_size
|
||||
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
||||
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
||||
self.activation = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.dense1(x))
|
||||
out = self.activation(self.dense2(x))
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Dataset
|
||||
train_ds = pt.datasets.Iris()
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=2)
|
||||
|
||||
# Dataloaders
|
||||
train_loader = DataLoader(train_ds, batch_size=150)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[1, 2, 3],
|
||||
proto_lr=0.01,
|
||||
bb_lr=0.01,
|
||||
input_dim=2,
|
||||
latent_dim=1,
|
||||
)
|
||||
|
||||
# Initialize the backbone
|
||||
backbone = Backbone(latent_size=hparams["input_dim"])
|
||||
|
||||
# Initialize the model
|
||||
model = SiameseGTLVQ(
|
||||
hparams,
|
||||
prototypes_initializer=pt.initializers.SMCI(train_ds),
|
||||
backbone=backbone,
|
||||
both_path_gradients=False,
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
vis = VisSiameseGLVQ2D(data=train_ds, border=0.1)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,124 +0,0 @@
|
||||
"""Warm-starting GLVQ with prototypes from Growing Neural Gas."""
|
||||
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.models import (
|
||||
GLVQ,
|
||||
KNN,
|
||||
GrowingNeuralGas,
|
||||
PruneLoserPrototypes,
|
||||
VisGLVQ2D,
|
||||
)
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
from pytorch_lightning.utilities.warnings import PossibleUserWarning
|
||||
from torch.optim.lr_scheduler import ExponentialLR
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
warnings.filterwarnings("ignore", category=PossibleUserWarning)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Reproducibility
|
||||
seed_everything(seed=4)
|
||||
# Command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Prepare the data
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
train_loader = DataLoader(train_ds, batch_size=64, num_workers=0)
|
||||
|
||||
# Initialize the gng
|
||||
gng = GrowingNeuralGas(
|
||||
hparams=dict(num_prototypes=5, insert_freq=2, lr=0.1),
|
||||
prototypes_initializer=pt.initializers.ZCI(2),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Callbacks
|
||||
es = EarlyStopping(
|
||||
monitor="loss",
|
||||
min_delta=0.001,
|
||||
patience=20,
|
||||
mode="min",
|
||||
verbose=False,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer for GNG
|
||||
trainer = pl.Trainer(
|
||||
max_epochs=1000,
|
||||
callbacks=[
|
||||
es,
|
||||
],
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(gng, train_loader)
|
||||
|
||||
# Hyperparameters
|
||||
hparams = dict(
|
||||
distribution=[],
|
||||
lr=0.01,
|
||||
)
|
||||
|
||||
# Warm-start prototypes
|
||||
knn = KNN(dict(k=1), data=train_ds)
|
||||
prototypes = gng.prototypes
|
||||
plabels = knn.predict(prototypes)
|
||||
|
||||
# Initialize the model
|
||||
model = GLVQ(
|
||||
hparams,
|
||||
optimizer=torch.optim.Adam,
|
||||
prototypes_initializer=pt.initializers.LCI(prototypes),
|
||||
labels_initializer=pt.initializers.LLI(plabels),
|
||||
lr_scheduler=ExponentialLR,
|
||||
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
|
||||
)
|
||||
|
||||
# Compute intermediate input and output sizes
|
||||
model.example_input_array = torch.zeros(4, 2)
|
||||
|
||||
# Callbacks
|
||||
vis = VisGLVQ2D(data=train_ds)
|
||||
pruning = PruneLoserPrototypes(
|
||||
threshold=0.02,
|
||||
idle_epochs=2,
|
||||
prune_quota_per_epoch=5,
|
||||
frequency=1,
|
||||
verbose=True,
|
||||
)
|
||||
es = EarlyStopping(
|
||||
monitor="train_loss",
|
||||
min_delta=0.001,
|
||||
patience=10,
|
||||
mode="min",
|
||||
verbose=True,
|
||||
check_on_train_epoch_end=True,
|
||||
)
|
||||
|
||||
# Setup trainer
|
||||
trainer = pl.Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[
|
||||
vis,
|
||||
pruning,
|
||||
es,
|
||||
],
|
||||
max_epochs=1000,
|
||||
log_every_n_steps=1,
|
||||
detect_anomaly=True,
|
||||
)
|
||||
|
||||
# Training loop
|
||||
trainer.fit(model, train_loader)
|
@ -1,134 +0,0 @@
|
||||
import logging
|
||||
|
||||
import prototorch as pt
|
||||
import pytorch_lightning as pl
|
||||
import torchmetrics
|
||||
from prototorch.core import SMCI
|
||||
from prototorch.y.architectures.base import Steps
|
||||
from prototorch.y.callbacks import (
|
||||
LogTorchmetricCallback,
|
||||
PlotLambdaMatrixToTensorboard,
|
||||
VisGMLVQ2D,
|
||||
)
|
||||
from prototorch.y.library.gmlvq import GMLVQ
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
# ##############################################################################
|
||||
|
||||
|
||||
def main():
|
||||
# ------------------------------------------------------------
|
||||
# DATA
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Dataset
|
||||
full_dataset = pt.datasets.Iris()
|
||||
full_count = len(full_dataset)
|
||||
|
||||
train_count = int(full_count * 0.5)
|
||||
val_count = int(full_count * 0.4)
|
||||
test_count = int(full_count * 0.1)
|
||||
|
||||
train_dataset, val_dataset, test_dataset = random_split(
|
||||
full_dataset, (train_count, val_count, test_count))
|
||||
|
||||
# Dataloader
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
shuffle=True,
|
||||
)
|
||||
val_loader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
shuffle=False,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
batch_size=1,
|
||||
num_workers=0,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# HYPERPARAMETERS
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Select Initializer
|
||||
components_initializer = SMCI(full_dataset)
|
||||
|
||||
# Define Hyperparameters
|
||||
hyperparameters = GMLVQ.HyperParameters(
|
||||
lr=dict(components_layer=0.1, _omega=0),
|
||||
input_dim=4,
|
||||
distribution=dict(
|
||||
num_classes=3,
|
||||
per_class=1,
|
||||
),
|
||||
component_initializer=components_initializer,
|
||||
)
|
||||
|
||||
# Create Model
|
||||
model = GMLVQ(hyperparameters)
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# TRAINING
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# Controlling Callbacks
|
||||
recall = LogTorchmetricCallback(
|
||||
'training_recall',
|
||||
torchmetrics.Recall,
|
||||
num_classes=3,
|
||||
step=Steps.TRAINING,
|
||||
)
|
||||
|
||||
stopping_criterion = LogTorchmetricCallback(
|
||||
'validation_recall',
|
||||
torchmetrics.Recall,
|
||||
num_classes=3,
|
||||
step=Steps.VALIDATION,
|
||||
)
|
||||
|
||||
es = EarlyStopping(
|
||||
monitor=stopping_criterion.name,
|
||||
mode="max",
|
||||
patience=10,
|
||||
)
|
||||
|
||||
# Visualization Callback
|
||||
vis = VisGMLVQ2D(data=full_dataset)
|
||||
|
||||
# Define trainer
|
||||
trainer = pl.Trainer(
|
||||
callbacks=[
|
||||
vis,
|
||||
recall,
|
||||
stopping_criterion,
|
||||
es,
|
||||
PlotLambdaMatrixToTensorboard(),
|
||||
],
|
||||
max_epochs=100,
|
||||
)
|
||||
|
||||
# Train
|
||||
trainer.fit(model, train_loader, val_loader)
|
||||
trainer.test(model, test_loader)
|
||||
|
||||
# Manual save
|
||||
trainer.save_checkpoint("./y_arch.ckpt")
|
||||
|
||||
# Load saved model
|
||||
new_model = GMLVQ.load_from_checkpoint(
|
||||
checkpoint_path="./y_arch.ckpt",
|
||||
strict=True,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,39 +1,25 @@
|
||||
"""`models` plugin for the `prototorch` package."""
|
||||
from .architectures.base import BaseYArchitecture
|
||||
from .architectures.comparison import (
|
||||
OmegaComparisonMixin,
|
||||
SimpleComparisonMixin,
|
||||
)
|
||||
from .architectures.competition import WTACompetitionMixin
|
||||
from .architectures.components import SupervisedArchitecture
|
||||
from .architectures.loss import GLVQLossMixin
|
||||
from .architectures.optimization import (
|
||||
MultipleLearningRateMixin,
|
||||
SingleLearningRateMixin,
|
||||
)
|
||||
|
||||
from .callbacks import PrototypeConvergence, PruneLoserPrototypes
|
||||
from .cbc import CBC, ImageCBC
|
||||
from .glvq import (
|
||||
GLVQ,
|
||||
GLVQ1,
|
||||
GLVQ21,
|
||||
GMLVQ,
|
||||
GRLVQ,
|
||||
GTLVQ,
|
||||
LGMLVQ,
|
||||
LVQMLN,
|
||||
ImageGLVQ,
|
||||
ImageGMLVQ,
|
||||
ImageGTLVQ,
|
||||
SiameseGLVQ,
|
||||
SiameseGMLVQ,
|
||||
SiameseGTLVQ,
|
||||
)
|
||||
from .knn import KNN
|
||||
from .lvq import (
|
||||
LVQ1,
|
||||
LVQ21,
|
||||
MedianLVQ,
|
||||
)
|
||||
from .probabilistic import (
|
||||
CELVQ,
|
||||
RSLVQ,
|
||||
SLVQ,
|
||||
)
|
||||
from .unsupervised import (
|
||||
GrowingNeuralGas,
|
||||
KohonenSOM,
|
||||
NeuralGas,
|
||||
)
|
||||
from .vis import *
|
||||
__all__ = [
|
||||
'BaseYArchitecture',
|
||||
"OmegaComparisonMixin",
|
||||
"SimpleComparisonMixin",
|
||||
"SingleLearningRateMixin",
|
||||
"MultipleLearningRateMixin",
|
||||
"SupervisedArchitecture",
|
||||
"WTACompetitionMixin",
|
||||
"GLVQLossMixin",
|
||||
]
|
||||
|
||||
__version__ = "1.0.0-a5"
|
||||
__version__ = "1.0.0"
|
||||
|
@ -1,219 +0,0 @@
|
||||
"""Abstract classes to be inherited by prototorch models."""
|
||||
|
||||
import logging
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchmetrics
|
||||
from prototorch.core.competitions import WTAC
|
||||
from prototorch.core.components import (
|
||||
AbstractComponents,
|
||||
Components,
|
||||
LabeledComponents,
|
||||
)
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
from prototorch.core.initializers import (
|
||||
LabelsInitializer,
|
||||
ZerosCompInitializer,
|
||||
)
|
||||
from prototorch.core.pooling import stratified_min_pooling
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
|
||||
class ProtoTorchBolt(pl.LightningModule):
|
||||
"""All ProtoTorch models are ProtoTorch Bolts.
|
||||
|
||||
hparams:
|
||||
- lr: learning rate
|
||||
|
||||
kwargs:
|
||||
- optimizer: optimizer class
|
||||
- lr_scheduler: learning rate scheduler class
|
||||
- lr_scheduler_kwargs: learning rate scheduler kwargs
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
# Hyperparameters
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("lr", 0.01)
|
||||
|
||||
# Default config
|
||||
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
||||
self.lr_scheduler = kwargs.get("lr_scheduler", None)
|
||||
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer(self.parameters(), lr=self.hparams["lr"])
|
||||
if self.lr_scheduler is not None:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
sch = {
|
||||
"scheduler": scheduler,
|
||||
"interval": "step",
|
||||
} # called after each training step
|
||||
return [optimizer], [sch]
|
||||
else:
|
||||
return optimizer
|
||||
|
||||
def reconfigure_optimizers(self):
|
||||
if self.trainer:
|
||||
self.trainer.strategy.setup_optimizers(self.trainer)
|
||||
else:
|
||||
logging.warning("No trainer to reconfigure optimizers!")
|
||||
|
||||
def __repr__(self):
|
||||
surep = super().__repr__()
|
||||
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
|
||||
wrapped = f"ProtoTorch Bolt(\n{indented})"
|
||||
return wrapped
|
||||
|
||||
|
||||
class PrototypeModel(ProtoTorchBolt):
|
||||
"""Abstract Prototype Model
|
||||
|
||||
kwargs:
|
||||
- distance_fn: distance function
|
||||
"""
|
||||
proto_layer: AbstractComponents
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
distance_fn = kwargs.get("distance_fn", euclidean_distance)
|
||||
self.distance_layer = LambdaLayer(distance_fn)
|
||||
|
||||
@property
|
||||
def num_prototypes(self):
|
||||
return len(self.proto_layer.components)
|
||||
|
||||
@property
|
||||
def prototypes(self):
|
||||
return self.proto_layer.components.detach().cpu()
|
||||
|
||||
@property
|
||||
def components(self):
|
||||
"""Only an alias for the prototypes."""
|
||||
return self.prototypes
|
||||
|
||||
def add_prototypes(self, *args, **kwargs):
|
||||
self.proto_layer.add_components(*args, **kwargs)
|
||||
self.hparams["distribution"] = self.proto_layer.distribution
|
||||
self.reconfigure_optimizers()
|
||||
|
||||
def remove_prototypes(self, indices):
|
||||
self.proto_layer.remove_components(indices)
|
||||
self.hparams["distribution"] = self.proto_layer.distribution
|
||||
self.reconfigure_optimizers()
|
||||
|
||||
|
||||
class UnsupervisedPrototypeModel(PrototypeModel):
|
||||
proto_layer: Components
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
if prototypes_initializer is not None:
|
||||
self.proto_layer = Components(
|
||||
self.hparams["num_prototypes"],
|
||||
initializer=prototypes_initializer,
|
||||
)
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos = self.proto_layer().type_as(x)
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
return distances
|
||||
|
||||
|
||||
class SupervisedPrototypeModel(PrototypeModel):
|
||||
proto_layer: LabeledComponents
|
||||
|
||||
def __init__(self, hparams, skip_proto_layer=False, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Layers
|
||||
distribution = hparams.get("distribution", None)
|
||||
prototypes_initializer = kwargs.get("prototypes_initializer", None)
|
||||
labels_initializer = kwargs.get("labels_initializer",
|
||||
LabelsInitializer())
|
||||
if not skip_proto_layer:
|
||||
# when subclasses do not need a customized prototype layer
|
||||
if prototypes_initializer is not None:
|
||||
# when building a new model
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=distribution,
|
||||
components_initializer=prototypes_initializer,
|
||||
labels_initializer=labels_initializer,
|
||||
)
|
||||
proto_shape = self.proto_layer.components.shape[1:]
|
||||
self.hparams["initialized_proto_shape"] = proto_shape
|
||||
else:
|
||||
# when restoring a checkpointed model
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=distribution,
|
||||
components_initializer=ZerosCompInitializer(
|
||||
self.hparams["initialized_proto_shape"]),
|
||||
)
|
||||
self.competition_layer = WTAC()
|
||||
|
||||
@property
|
||||
def prototype_labels(self):
|
||||
return self.proto_layer.labels.detach().cpu()
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return self.proto_layer.num_classes
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos)
|
||||
return distances
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(distances, plabels)
|
||||
y_pred = F.softmin(winning, dim=1)
|
||||
return y_pred
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
with torch.no_grad():
|
||||
_, plabels = self.proto_layer()
|
||||
y_pred = self.competition_layer(distances, plabels)
|
||||
return y_pred
|
||||
|
||||
def predict(self, x):
|
||||
with torch.no_grad():
|
||||
distances = self.compute_distances(x)
|
||||
y_pred = self.predict_from_distances(distances)
|
||||
return y_pred
|
||||
|
||||
def log_acc(self, distances, targets, tag):
|
||||
preds = self.predict_from_distances(distances)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||
# `.int()` because FloatTensors are assumed to be class probabilities
|
||||
|
||||
self.log(tag,
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, targets = batch
|
||||
|
||||
preds = self.predict(x)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
|
||||
|
||||
self.log("test_acc", accuracy)
|
@ -1,7 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Callable, Dict
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from prototorch.core.distances import euclidean_distance
|
||||
@ -9,8 +9,8 @@ from prototorch.core.initializers import (
|
||||
AbstractLinearTransformInitializer,
|
||||
EyeLinearTransformInitializer,
|
||||
)
|
||||
from prototorch.models.architectures.base import BaseYArchitecture
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
from prototorch.y.architectures.base import BaseYArchitecture
|
||||
from torch import Tensor
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
@ -19,11 +19,12 @@ class SimpleComparisonMixin(BaseYArchitecture):
|
||||
"""
|
||||
Simple Comparison
|
||||
|
||||
A comparison layer that only uses the positions of the components and the batch for dissimilarity computation.
|
||||
A comparison layer that only uses the positions of the components
|
||||
and the batch for dissimilarity computation.
|
||||
"""
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(BaseYArchitecture.HyperParameters):
|
||||
"""
|
||||
@ -36,7 +37,7 @@ class SimpleComparisonMixin(BaseYArchitecture):
|
||||
comparison_parameters: dict = field(default_factory=lambda: dict())
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
def init_comparison(self, hparams: HyperParameters):
|
||||
self.comparison_layer = LambdaLayer(
|
||||
fn=hparams.comparison_fn,
|
||||
@ -64,19 +65,22 @@ class OmegaComparisonMixin(SimpleComparisonMixin):
|
||||
"""
|
||||
Omega Comparison
|
||||
|
||||
A comparison layer that uses the positions of the components and the batch for dissimilarity computation.
|
||||
A comparison layer that uses the positions of the components
|
||||
and the batch for dissimilarity computation.
|
||||
"""
|
||||
|
||||
_omega: torch.Tensor
|
||||
|
||||
# HyperParameters
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
@dataclass
|
||||
class HyperParameters(SimpleComparisonMixin.HyperParameters):
|
||||
"""
|
||||
input_dim: Necessary Field: The dimensionality of the input.
|
||||
latent_dim: The dimensionality of the latent space. Default: 2.
|
||||
omega_initializer: The initializer to use for the omega matrix. Default: EyeLinearTransformInitializer.
|
||||
latent_dim:
|
||||
The dimensionality of the latent space. Default: 2.
|
||||
omega_initializer:
|
||||
The initializer to use for the omega matrix. Default: EyeLinearTransformInitializer.
|
||||
"""
|
||||
input_dim: int | None = None
|
||||
latent_dim: int = 2
|
||||
@ -84,7 +88,7 @@ class OmegaComparisonMixin(SimpleComparisonMixin):
|
||||
AbstractLinearTransformInitializer] = EyeLinearTransformInitializer
|
||||
|
||||
# Steps
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
def init_comparison(self, hparams: HyperParameters) -> None:
|
||||
super().init_comparison(hparams)
|
||||
|
||||
@ -100,13 +104,34 @@ class OmegaComparisonMixin(SimpleComparisonMixin):
|
||||
self.comparison_kwargs = dict(omega=self._omega)
|
||||
|
||||
# Properties
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
# ----------------------------------------------------------------------------------------------
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
'''
|
||||
Omega Matrix. Mapping applied to data and prototypes.
|
||||
'''
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
'''
|
||||
Lambda Matrix.
|
||||
'''
|
||||
omega = self._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
'''
|
||||
Relevance Profile. Main Diagonal of the Lambda Matrix.
|
||||
'''
|
||||
return self.lambda_matrix.diag().abs()
|
||||
|
||||
@property
|
||||
def classification_influence_profile(self):
|
||||
'''
|
||||
Classification Influence Profile. Influence of each dimension.
|
||||
'''
|
||||
lam = self.lambda_matrix
|
||||
return lam.abs().sum(0)
|
@ -1,7 +1,7 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.core.competitions import WTAC
|
||||
from prototorch.y.architectures.base import BaseYArchitecture
|
||||
from prototorch.models.architectures.base import BaseYArchitecture
|
||||
|
||||
|
||||
class WTACompetitionMixin(BaseYArchitecture):
|
@ -6,7 +6,7 @@ from prototorch.core.initializers import (
|
||||
LabelsInitializer,
|
||||
ZerosCompInitializer,
|
||||
)
|
||||
from prototorch.y import BaseYArchitecture
|
||||
from prototorch.models import BaseYArchitecture
|
||||
|
||||
|
||||
class SupervisedArchitecture(BaseYArchitecture):
|
@ -1,7 +1,7 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from prototorch.core.losses import GLVQLoss
|
||||
from prototorch.y.architectures.base import BaseYArchitecture
|
||||
from prototorch.models.architectures.base import BaseYArchitecture
|
||||
|
||||
|
||||
class GLVQLossMixin(BaseYArchitecture):
|
@ -2,7 +2,7 @@ from dataclasses import dataclass, field
|
||||
from typing import Type
|
||||
|
||||
import torch
|
||||
from prototorch.y import BaseYArchitecture
|
||||
from prototorch.models import BaseYArchitecture
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
@ -1,152 +1,217 @@
|
||||
"""Lightning Callbacks."""
|
||||
|
||||
import logging
|
||||
from typing import TYPE_CHECKING
|
||||
import warnings
|
||||
from typing import Optional, Type
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.core.initializers import LiteralCompInitializer
|
||||
import torchmetrics
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.architectures.base import BaseYArchitecture, Steps
|
||||
from prototorch.models.library.gmlvq import GMLVQ
|
||||
from prototorch.models.vis import Vis2DAbstract
|
||||
from prototorch.utils.utils import mesh2d
|
||||
from pytorch_lightning.loggers import TensorBoardLogger
|
||||
|
||||
from .extras import ConnectionTopology
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from prototorch.models import GLVQ, GrowingNeuralGas
|
||||
DIVERGING_COLOR_MAPS = [
|
||||
'PiYG',
|
||||
'PRGn',
|
||||
'BrBG',
|
||||
'PuOr',
|
||||
'RdGy',
|
||||
'RdBu',
|
||||
'RdYlBu',
|
||||
'RdYlGn',
|
||||
'Spectral',
|
||||
'coolwarm',
|
||||
'bwr',
|
||||
'seismic',
|
||||
]
|
||||
|
||||
|
||||
class PruneLoserPrototypes(pl.Callback):
|
||||
class LogTorchmetricCallback(pl.Callback):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
threshold=0.01,
|
||||
idle_epochs=10,
|
||||
prune_quota_per_epoch=-1,
|
||||
frequency=1,
|
||||
replace=False,
|
||||
prototypes_initializer=None,
|
||||
verbose=False,
|
||||
):
|
||||
self.threshold = threshold # minimum win ratio
|
||||
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
||||
self.prune_quota_per_epoch = prune_quota_per_epoch
|
||||
self.frequency = frequency
|
||||
self.replace = replace
|
||||
self.verbose = verbose
|
||||
self.prototypes_initializer = prototypes_initializer
|
||||
name,
|
||||
metric: Type[torchmetrics.Metric],
|
||||
step: str = Steps.TRAINING,
|
||||
**metric_kwargs,
|
||||
) -> None:
|
||||
self.name = name
|
||||
self.metric = metric
|
||||
self.metric_kwargs = metric_kwargs
|
||||
self.step = step
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module: "GLVQ"):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
return None
|
||||
if (trainer.current_epoch + 1) % self.frequency:
|
||||
return None
|
||||
|
||||
ratios = pl_module.prototype_win_ratios.mean(dim=0)
|
||||
to_prune_tensor = torch.arange(len(ratios))[ratios < self.threshold]
|
||||
to_prune = to_prune_tensor.tolist()
|
||||
prune_labels = pl_module.prototype_labels[to_prune]
|
||||
if self.prune_quota_per_epoch > 0:
|
||||
to_prune = to_prune[:self.prune_quota_per_epoch]
|
||||
prune_labels = prune_labels[:self.prune_quota_per_epoch]
|
||||
|
||||
if len(to_prune) > 0:
|
||||
logging.debug(f"\nPrototype win ratios: {ratios}")
|
||||
logging.debug(f"Pruning prototypes at: {to_prune}")
|
||||
logging.debug(f"Corresponding labels are: {prune_labels.tolist()}")
|
||||
|
||||
cur_num_protos = pl_module.num_prototypes
|
||||
pl_module.remove_prototypes(indices=to_prune)
|
||||
|
||||
if self.replace:
|
||||
labels, counts = torch.unique(prune_labels,
|
||||
sorted=True,
|
||||
return_counts=True)
|
||||
distribution = dict(zip(labels.tolist(), counts.tolist()))
|
||||
|
||||
logging.info(f"Re-adding pruned prototypes...")
|
||||
logging.debug(f"distribution={distribution}")
|
||||
|
||||
pl_module.add_prototypes(
|
||||
distribution=distribution,
|
||||
components_initializer=self.prototypes_initializer)
|
||||
new_num_protos = pl_module.num_prototypes
|
||||
|
||||
logging.info(f"`num_prototypes` changed from {cur_num_protos} "
|
||||
f"to {new_num_protos}.")
|
||||
return True
|
||||
|
||||
|
||||
class PrototypeConvergence(pl.Callback):
|
||||
|
||||
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
||||
self.min_delta = min_delta
|
||||
self.idle_epochs = idle_epochs # epochs to wait
|
||||
self.verbose = verbose
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if (trainer.current_epoch + 1) < self.idle_epochs:
|
||||
return None
|
||||
|
||||
logging.info("Stopping...")
|
||||
# TODO
|
||||
return True
|
||||
|
||||
|
||||
class GNGCallback(pl.Callback):
|
||||
"""GNG Callback.
|
||||
|
||||
Applies growing algorithm based on accumulated error and topology.
|
||||
|
||||
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, reduction=0.1, freq=10):
|
||||
self.reduction = reduction
|
||||
self.freq = freq
|
||||
|
||||
def on_train_epoch_end(
|
||||
def setup(
|
||||
self,
|
||||
trainer: pl.Trainer,
|
||||
pl_module: "GrowingNeuralGas",
|
||||
pl_module: BaseYArchitecture,
|
||||
stage: Optional[str] = None,
|
||||
) -> None:
|
||||
pl_module.register_torchmetric(
|
||||
self,
|
||||
self.metric,
|
||||
step=self.step,
|
||||
**self.metric_kwargs,
|
||||
)
|
||||
|
||||
def __call__(self, value, pl_module: BaseYArchitecture):
|
||||
pl_module.log(self.name, value)
|
||||
|
||||
|
||||
class LogConfusionMatrix(LogTorchmetricCallback):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_classes,
|
||||
name="confusion",
|
||||
on='prediction',
|
||||
**kwargs,
|
||||
):
|
||||
if (trainer.current_epoch + 1) % self.freq == 0:
|
||||
# Get information
|
||||
errors = pl_module.errors
|
||||
topology: ConnectionTopology = pl_module.topology_layer
|
||||
components = pl_module.proto_layer.components
|
||||
super().__init__(
|
||||
name,
|
||||
torchmetrics.ConfusionMatrix,
|
||||
on=on,
|
||||
num_classes=num_classes,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Insertion point
|
||||
worst = torch.argmax(errors)
|
||||
def __call__(self, value, pl_module: BaseYArchitecture):
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(value.detach().cpu().numpy())
|
||||
|
||||
neighbors = topology.get_neighbors(worst)[0]
|
||||
# Show all ticks and label them with the respective list entries
|
||||
# ax.set_xticks(np.arange(len(farmers)), labels=farmers)
|
||||
# ax.set_yticks(np.arange(len(vegetables)), labels=vegetables)
|
||||
|
||||
if len(neighbors) == 0:
|
||||
logging.log(level=20, msg="No neighbor-pairs found!")
|
||||
return
|
||||
# Rotate the tick labels and set their alignment.
|
||||
plt.setp(
|
||||
ax.get_xticklabels(),
|
||||
rotation=45,
|
||||
ha="right",
|
||||
rotation_mode="anchor",
|
||||
)
|
||||
|
||||
neighbors_errors = errors[neighbors]
|
||||
worst_neighbor = neighbors[torch.argmax(neighbors_errors)]
|
||||
# Loop over data dimensions and create text annotations.
|
||||
for i in range(len(value)):
|
||||
for j in range(len(value)):
|
||||
text = ax.text(
|
||||
j,
|
||||
i,
|
||||
value[i, j].item(),
|
||||
ha="center",
|
||||
va="center",
|
||||
color="w",
|
||||
)
|
||||
|
||||
# New Prototype
|
||||
new_component = 0.5 * (components[worst] +
|
||||
components[worst_neighbor])
|
||||
ax.set_title(self.name)
|
||||
fig.tight_layout()
|
||||
|
||||
# Add component
|
||||
pl_module.proto_layer.add_components(
|
||||
1,
|
||||
initializer=LiteralCompInitializer(new_component.unsqueeze(0)),
|
||||
pl_module.logger.experiment.add_figure(
|
||||
tag=self.name,
|
||||
figure=fig,
|
||||
close=True,
|
||||
global_step=pl_module.global_step,
|
||||
)
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax()
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
if x_train is not None:
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(
|
||||
np.vstack([x_train, protos]),
|
||||
self.border,
|
||||
self.resolution,
|
||||
)
|
||||
else:
|
||||
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||
_components = pl_module.components_layer.components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
|
||||
|
||||
class PlotLambdaMatrixToTensorboard(pl.Callback):
|
||||
|
||||
def __init__(self, cmap='seismic') -> None:
|
||||
super().__init__()
|
||||
self.cmap = cmap
|
||||
|
||||
if self.cmap not in DIVERGING_COLOR_MAPS and type(self.cmap) is str:
|
||||
warnings.warn(
|
||||
f"{self.cmap} is not a diverging color map. We recommend to use one of the following: {DIVERGING_COLOR_MAPS}"
|
||||
)
|
||||
|
||||
# Adjust Topology
|
||||
topology.add_prototype()
|
||||
topology.add_connection(worst, -1)
|
||||
topology.add_connection(worst_neighbor, -1)
|
||||
topology.remove_connection(worst, worst_neighbor)
|
||||
def on_train_start(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
# New errors
|
||||
worst_error = errors[worst].unsqueeze(0)
|
||||
pl_module.errors = torch.cat([pl_module.errors, worst_error])
|
||||
pl_module.errors[worst] = errors[worst] * self.reduction
|
||||
pl_module.errors[
|
||||
worst_neighbor] = errors[worst_neighbor] * self.reduction
|
||||
def on_train_epoch_end(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
trainer.strategy.setup_optimizers(trainer)
|
||||
def plot_lambda(self, trainer, pl_module: GMLVQ):
|
||||
|
||||
self.fig, self.ax = plt.subplots(1, 1)
|
||||
|
||||
# plot lambda matrix
|
||||
l_matrix = pl_module.lambda_matrix
|
||||
|
||||
# normalize lambda matrix
|
||||
l_matrix = l_matrix / torch.max(torch.abs(l_matrix))
|
||||
|
||||
# plot lambda matrix
|
||||
self.ax.imshow(l_matrix.detach().numpy(), self.cmap, vmin=-1, vmax=1)
|
||||
|
||||
self.fig.colorbar(self.ax.images[-1])
|
||||
|
||||
# add title
|
||||
self.ax.set_title('Lambda Matrix')
|
||||
|
||||
# add to tensorboard
|
||||
if isinstance(trainer.logger, TensorBoardLogger):
|
||||
trainer.logger.experiment.add_figure(
|
||||
f"lambda_matrix",
|
||||
self.fig,
|
||||
trainer.global_step,
|
||||
)
|
||||
else:
|
||||
warnings.warn(
|
||||
f"{self.__class__.__name__} is not compatible with {trainer.logger.__class__.__name__} as logger. Use TensorBoardLogger instead."
|
||||
)
|
||||
|
@ -1,80 +0,0 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchmetrics
|
||||
from prototorch.core.competitions import CBCC
|
||||
from prototorch.core.components import ReasoningComponents
|
||||
from prototorch.core.initializers import RandomReasoningsInitializer
|
||||
from prototorch.core.losses import MarginLoss
|
||||
from prototorch.core.similarities import euclidean_similarity
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from .glvq import SiameseGLVQ
|
||||
from .mixins import ImagePrototypesMixin
|
||||
|
||||
|
||||
class CBC(SiameseGLVQ):
|
||||
"""Classification-By-Components."""
|
||||
proto_layer: ReasoningComponents
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, skip_proto_layer=True, **kwargs)
|
||||
|
||||
similarity_fn = kwargs.get("similarity_fn", euclidean_similarity)
|
||||
components_initializer = kwargs.get("components_initializer", None)
|
||||
reasonings_initializer = kwargs.get("reasonings_initializer",
|
||||
RandomReasoningsInitializer())
|
||||
self.components_layer = ReasoningComponents(
|
||||
self.hparams["distribution"],
|
||||
components_initializer=components_initializer,
|
||||
reasonings_initializer=reasonings_initializer,
|
||||
)
|
||||
self.similarity_layer = LambdaLayer(similarity_fn)
|
||||
self.competition_layer = CBCC()
|
||||
|
||||
# Namespace hook
|
||||
self.proto_layer = self.components_layer
|
||||
|
||||
self.loss = MarginLoss(self.hparams["margin"])
|
||||
|
||||
def forward(self, x):
|
||||
components, reasonings = self.components_layer()
|
||||
latent_x = self.backbone(x)
|
||||
self.backbone.requires_grad_(self.both_path_gradients)
|
||||
latent_components = self.backbone(components)
|
||||
self.backbone.requires_grad_(True)
|
||||
detections = self.similarity_layer(latent_x, latent_components)
|
||||
probs = self.competition_layer(detections, reasonings)
|
||||
return probs
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
y_pred = self(x)
|
||||
num_classes = self.num_classes
|
||||
y_true = F.one_hot(y.long(), num_classes=num_classes)
|
||||
loss = self.loss(y_pred, y_true).mean()
|
||||
return y_pred, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
y_pred, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
|
||||
preds = torch.argmax(y_pred, dim=1)
|
||||
accuracy = torchmetrics.functional.accuracy(preds.int(),
|
||||
batch[1].int())
|
||||
self.log("train_acc",
|
||||
accuracy,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True)
|
||||
return train_loss
|
||||
|
||||
def predict(self, x):
|
||||
with torch.no_grad():
|
||||
y_pred = self(x)
|
||||
y_pred = torch.argmax(y_pred, dim=1)
|
||||
return y_pred
|
||||
|
||||
|
||||
class ImageCBC(ImagePrototypesMixin, CBC):
|
||||
"""CBC model that constrains the components to the range [0, 1] by
|
||||
clamping after updates.
|
||||
"""
|
@ -1,130 +0,0 @@
|
||||
"""prototorch.models.extras
|
||||
|
||||
Modules not yet available in prototorch go here temporarily.
|
||||
|
||||
"""
|
||||
|
||||
import torch
|
||||
from prototorch.core.similarities import gaussian
|
||||
|
||||
|
||||
def rank_scaled_gaussian(distances, lambd):
|
||||
order = torch.argsort(distances, dim=1)
|
||||
ranks = torch.argsort(order, dim=1)
|
||||
return torch.exp(-torch.exp(-ranks / lambd) * distances)
|
||||
|
||||
|
||||
def orthogonalization(tensors):
|
||||
"""Orthogonalization via polar decomposition """
|
||||
u, _, v = torch.svd(tensors, compute_uv=True)
|
||||
u_shape = tuple(list(u.shape))
|
||||
v_shape = tuple(list(v.shape))
|
||||
|
||||
# reshape to (num x N x M)
|
||||
u = torch.reshape(u, (-1, u_shape[-2], u_shape[-1]))
|
||||
v = torch.reshape(v, (-1, v_shape[-2], v_shape[-1]))
|
||||
|
||||
out = u @ v.permute([0, 2, 1])
|
||||
|
||||
out = torch.reshape(out, u_shape[:-1] + (v_shape[-2], ))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def ltangent_distance(x, y, omegas):
|
||||
r"""Localized Tangent distance.
|
||||
Compute Orthogonal Complement: math:`\bm P_k = \bm I - \Omega_k \Omega_k^T`
|
||||
Compute Tangent Distance: math:`{\| \bm P \bm x - \bm P_k \bm y_k \|}_2`
|
||||
|
||||
:param `torch.tensor` omegas: Three dimensional matrix
|
||||
:rtype: `torch.tensor`
|
||||
"""
|
||||
x, y = [arr.view(arr.size(0), -1) for arr in (x, y)]
|
||||
p = torch.eye(omegas.shape[-2], device=omegas.device) - torch.bmm(
|
||||
omegas, omegas.permute([0, 2, 1]))
|
||||
projected_x = x @ p
|
||||
projected_y = torch.diagonal(y @ p).T
|
||||
expanded_y = torch.unsqueeze(projected_y, dim=1)
|
||||
batchwise_difference = expanded_y - projected_x
|
||||
differences_squared = batchwise_difference**2
|
||||
distances = torch.sqrt(torch.sum(differences_squared, dim=2))
|
||||
distances = distances.permute(1, 0)
|
||||
return distances
|
||||
|
||||
|
||||
class GaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, variance):
|
||||
super().__init__()
|
||||
self.variance = variance
|
||||
|
||||
def forward(self, distances):
|
||||
return gaussian(distances, self.variance)
|
||||
|
||||
|
||||
class RankScaledGaussianPrior(torch.nn.Module):
|
||||
|
||||
def __init__(self, lambd):
|
||||
super().__init__()
|
||||
self.lambd = lambd
|
||||
|
||||
def forward(self, distances):
|
||||
return rank_scaled_gaussian(distances, self.lambd)
|
||||
|
||||
|
||||
class ConnectionTopology(torch.nn.Module):
|
||||
|
||||
def __init__(self, agelimit, num_prototypes):
|
||||
super().__init__()
|
||||
self.agelimit = agelimit
|
||||
self.num_prototypes = num_prototypes
|
||||
|
||||
self.cmat = torch.zeros((self.num_prototypes, self.num_prototypes))
|
||||
self.age = torch.zeros_like(self.cmat)
|
||||
|
||||
def forward(self, d):
|
||||
order = torch.argsort(d, dim=1)
|
||||
|
||||
for element in order:
|
||||
i0, i1 = element[0], element[1]
|
||||
|
||||
self.cmat[i0][i1] = 1
|
||||
self.cmat[i1][i0] = 1
|
||||
|
||||
self.age[i0][i1] = 0
|
||||
self.age[i1][i0] = 0
|
||||
|
||||
self.age[i0][self.cmat[i0] == 1] += 1
|
||||
self.age[i1][self.cmat[i1] == 1] += 1
|
||||
|
||||
self.cmat[i0][self.age[i0] > self.agelimit] = 0
|
||||
self.cmat[i1][self.age[i1] > self.agelimit] = 0
|
||||
|
||||
def get_neighbors(self, position):
|
||||
return torch.where(self.cmat[position])
|
||||
|
||||
def add_prototype(self):
|
||||
new_cmat = torch.zeros([dim + 1 for dim in self.cmat.shape])
|
||||
new_cmat[:-1, :-1] = self.cmat
|
||||
self.cmat = new_cmat
|
||||
|
||||
new_age = torch.zeros([dim + 1 for dim in self.age.shape])
|
||||
new_age[:-1, :-1] = self.age
|
||||
self.age = new_age
|
||||
|
||||
def add_connection(self, a, b):
|
||||
self.cmat[a][b] = 1
|
||||
self.cmat[b][a] = 1
|
||||
|
||||
self.age[a][b] = 0
|
||||
self.age[b][a] = 0
|
||||
|
||||
def remove_connection(self, a, b):
|
||||
self.cmat[a][b] = 0
|
||||
self.cmat[b][a] = 0
|
||||
|
||||
self.age[a][b] = 0
|
||||
self.age[b][a] = 0
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(agelimit): ({self.agelimit})"
|
@ -1,414 +0,0 @@
|
||||
"""Models based on the GLVQ framework."""
|
||||
|
||||
import torch
|
||||
from prototorch.core.competitions import wtac
|
||||
from prototorch.core.distances import (
|
||||
lomega_distance,
|
||||
omega_distance,
|
||||
squared_euclidean_distance,
|
||||
)
|
||||
from prototorch.core.initializers import EyeLinearTransformInitializer
|
||||
from prototorch.core.losses import (
|
||||
GLVQLoss,
|
||||
lvq1_loss,
|
||||
lvq21_loss,
|
||||
)
|
||||
from prototorch.core.transforms import LinearTransform
|
||||
from prototorch.nn.wrappers import LambdaLayer, LossLayer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
from .extras import ltangent_distance, orthogonalization
|
||||
from .mixins import ImagePrototypesMixin
|
||||
|
||||
|
||||
class GLVQ(SupervisedPrototypeModel):
|
||||
"""Generalized Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("margin", 0.0)
|
||||
self.hparams.setdefault("transfer_fn", "identity")
|
||||
self.hparams.setdefault("transfer_beta", 10.0)
|
||||
|
||||
# Loss
|
||||
self.loss = GLVQLoss(
|
||||
margin=self.hparams["margin"],
|
||||
transfer_fn=self.hparams["transfer_fn"],
|
||||
beta=self.hparams["transfer_beta"],
|
||||
)
|
||||
|
||||
# def on_save_checkpoint(self, checkpoint):
|
||||
# if "prototype_win_ratios" in checkpoint["state_dict"]:
|
||||
# del checkpoint["state_dict"]["prototype_win_ratios"]
|
||||
|
||||
def initialize_prototype_win_ratios(self):
|
||||
self.register_buffer(
|
||||
"prototype_win_ratios",
|
||||
torch.zeros(self.num_prototypes, device=self.device),
|
||||
)
|
||||
|
||||
def on_train_epoch_start(self):
|
||||
self.initialize_prototype_win_ratios()
|
||||
|
||||
def log_prototype_win_ratios(self, distances):
|
||||
batch_size = len(distances)
|
||||
prototype_wc = torch.zeros(
|
||||
self.num_prototypes,
|
||||
dtype=torch.long,
|
||||
device=self.device,
|
||||
)
|
||||
wi, wc = torch.unique(
|
||||
distances.min(dim=-1).indices,
|
||||
sorted=True,
|
||||
return_counts=True,
|
||||
)
|
||||
prototype_wc[wi] = wc
|
||||
prototype_wr = prototype_wc / batch_size
|
||||
self.prototype_win_ratios = torch.vstack([
|
||||
self.prototype_win_ratios,
|
||||
prototype_wr,
|
||||
])
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x)
|
||||
_, plabels = self.proto_layer()
|
||||
loss = self.loss(out, y, plabels)
|
||||
return out, loss
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx)
|
||||
self.log_prototype_win_ratios(out)
|
||||
self.log("train_loss", train_loss)
|
||||
self.log_acc(out, batch[-1], tag="train_acc")
|
||||
return train_loss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
out, val_loss = self.shared_step(batch, batch_idx)
|
||||
self.log("val_loss", val_loss)
|
||||
self.log_acc(out, batch[-1], tag="val_acc")
|
||||
return val_loss
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
out, test_loss = self.shared_step(batch, batch_idx)
|
||||
self.log_acc(out, batch[-1], tag="test_acc")
|
||||
return test_loss
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
test_loss = 0.0
|
||||
for batch_loss in outputs:
|
||||
test_loss += batch_loss.item()
|
||||
self.log("test_loss", test_loss)
|
||||
|
||||
|
||||
class SiameseGLVQ(GLVQ):
|
||||
"""GLVQ in a Siamese setting.
|
||||
|
||||
GLVQ model that applies an arbitrary transformation on the inputs and the
|
||||
prototypes before computing the distances between them. The weights in the
|
||||
transformation pipeline are only learned from the inputs.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hparams,
|
||||
backbone=torch.nn.Identity(),
|
||||
both_path_gradients=False,
|
||||
**kwargs,
|
||||
):
|
||||
distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
self.backbone = backbone
|
||||
self.both_path_gradients = both_path_gradients
|
||||
|
||||
def configure_optimizers(self):
|
||||
proto_opt = self.optimizer(
|
||||
self.proto_layer.parameters(),
|
||||
lr=self.hparams["proto_lr"],
|
||||
)
|
||||
# Only add a backbone optimizer if backbone has trainable parameters
|
||||
bb_params = list(self.backbone.parameters())
|
||||
if (bb_params):
|
||||
bb_opt = self.optimizer(bb_params, lr=self.hparams["bb_lr"])
|
||||
optimizers = [proto_opt, bb_opt]
|
||||
else:
|
||||
optimizers = [proto_opt]
|
||||
if self.lr_scheduler is not None:
|
||||
schedulers = []
|
||||
for optimizer in optimizers:
|
||||
scheduler = self.lr_scheduler(optimizer,
|
||||
**self.lr_scheduler_kwargs)
|
||||
schedulers.append(scheduler)
|
||||
return optimizers, schedulers
|
||||
else:
|
||||
return optimizers
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
x, protos = [arr.view(arr.size(0), -1) for arr in (x, protos)]
|
||||
latent_x = self.backbone(x)
|
||||
|
||||
bb_grad = any([el.requires_grad for el in self.backbone.parameters()])
|
||||
|
||||
self.backbone.requires_grad_(bb_grad and self.both_path_gradients)
|
||||
latent_protos = self.backbone(protos)
|
||||
self.backbone.requires_grad_(bb_grad)
|
||||
|
||||
distances = self.distance_layer(latent_x, latent_protos)
|
||||
return distances
|
||||
|
||||
def predict_latent(self, x, map_protos=True):
|
||||
"""Predict `x` assuming it is already embedded in the latent space.
|
||||
|
||||
Only the prototypes are embedded in the latent space using the
|
||||
backbone.
|
||||
|
||||
"""
|
||||
self.eval()
|
||||
with torch.no_grad():
|
||||
protos, plabels = self.proto_layer()
|
||||
if map_protos:
|
||||
protos = self.backbone(protos)
|
||||
d = self.distance_layer(x, protos)
|
||||
y_pred = wtac(d, plabels)
|
||||
return y_pred
|
||||
|
||||
|
||||
class LVQMLN(SiameseGLVQ):
|
||||
"""Learning Vector Quantization Multi-Layer Network.
|
||||
|
||||
GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT
|
||||
on the prototypes before computing the distances between them. This of
|
||||
course, means that the prototypes no longer live the input space, but
|
||||
rather in the embedding space.
|
||||
|
||||
"""
|
||||
|
||||
def compute_distances(self, x):
|
||||
latent_protos, _ = self.proto_layer()
|
||||
latent_x = self.backbone(x)
|
||||
distances = self.distance_layer(latent_x, latent_protos)
|
||||
return distances
|
||||
|
||||
|
||||
class GRLVQ(SiameseGLVQ):
|
||||
"""Generalized Relevance Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise.
|
||||
|
||||
"""
|
||||
_relevances: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
relevances = torch.ones(self.hparams["input_dim"], device=self.device)
|
||||
self.register_parameter("_relevances", Parameter(relevances))
|
||||
|
||||
# Override the backbone
|
||||
self.backbone = LambdaLayer(lambda x: x @ torch.diag(self._relevances),
|
||||
name="relevance scaling")
|
||||
|
||||
@property
|
||||
def relevance_profile(self):
|
||||
return self._relevances.detach().cpu()
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(relevances): (shape: {tuple(self._relevances.shape)})"
|
||||
|
||||
|
||||
class SiameseGMLVQ(SiameseGLVQ):
|
||||
"""Generalized Matrix Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Override the backbone
|
||||
omega_initializer = kwargs.get("omega_initializer",
|
||||
EyeLinearTransformInitializer())
|
||||
self.backbone = LinearTransform(
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
initializer=omega_initializer,
|
||||
)
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self.backbone.weights
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self.backbone.weights # (input_dim, latent_dim)
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
|
||||
class GMLVQ(GLVQ):
|
||||
"""Generalized Matrix Learning Vector Quantization.
|
||||
|
||||
Implemented as a regular GLVQ network that simply uses a different distance
|
||||
function. This makes it easier to implement a localized variant.
|
||||
|
||||
"""
|
||||
|
||||
# Parameters
|
||||
_omega: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", omega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Additional parameters
|
||||
omega_initializer = kwargs.get(
|
||||
"omega_initializer",
|
||||
EyeLinearTransformInitializer(),
|
||||
)
|
||||
omega = omega_initializer.generate(
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
self.backbone = LambdaLayer(
|
||||
lambda x: x @ self._omega,
|
||||
name="omega matrix",
|
||||
)
|
||||
|
||||
@property
|
||||
def omega_matrix(self):
|
||||
return self._omega.detach().cpu()
|
||||
|
||||
@property
|
||||
def lambda_matrix(self):
|
||||
omega = self._omega.detach() # (input_dim, latent_dim)
|
||||
lam = omega @ omega.T
|
||||
return lam.detach().cpu()
|
||||
|
||||
def compute_distances(self, x):
|
||||
protos, _ = self.proto_layer()
|
||||
distances = self.distance_layer(x, protos, self._omega)
|
||||
return distances
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(omega): (shape: {tuple(self._omega.shape)})"
|
||||
|
||||
|
||||
class LGMLVQ(GMLVQ):
|
||||
"""Localized and Generalized Matrix Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", lomega_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Re-register `_omega` to override the one from the super class.
|
||||
omega = torch.randn(
|
||||
self.num_prototypes,
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
device=self.device,
|
||||
)
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
|
||||
class GTLVQ(LGMLVQ):
|
||||
"""Localized and Generalized Tangent Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
distance_fn = kwargs.pop("distance_fn", ltangent_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
omega_initializer = kwargs.get("omega_initializer")
|
||||
|
||||
if omega_initializer is not None:
|
||||
subspace = omega_initializer.generate(
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
)
|
||||
omega = torch.repeat_interleave(
|
||||
subspace.unsqueeze(0),
|
||||
self.num_prototypes,
|
||||
dim=0,
|
||||
)
|
||||
else:
|
||||
omega = torch.rand(
|
||||
self.num_prototypes,
|
||||
self.hparams["input_dim"],
|
||||
self.hparams["latent_dim"],
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
# Re-register `_omega` to override the one from the super class.
|
||||
self.register_parameter("_omega", Parameter(omega))
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
||||
|
||||
|
||||
class SiameseGTLVQ(SiameseGLVQ, GTLVQ):
|
||||
"""Generalized Tangent Learning Vector Quantization.
|
||||
|
||||
Implemented as a Siamese network with a linear transformation backbone.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class GLVQ1(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq1_loss)
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class GLVQ21(GLVQ):
|
||||
"""Generalized Learning Vector Quantization 2.1."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
self.loss = LossLayer(lvq21_loss)
|
||||
self.optimizer = torch.optim.SGD
|
||||
|
||||
|
||||
class ImageGLVQ(ImagePrototypesMixin, GLVQ):
|
||||
"""GLVQ for training on image data.
|
||||
|
||||
GLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ImageGMLVQ(ImagePrototypesMixin, GMLVQ):
|
||||
"""GMLVQ for training on image data.
|
||||
|
||||
GMLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ImageGTLVQ(ImagePrototypesMixin, GTLVQ):
|
||||
"""GTLVQ for training on image data.
|
||||
|
||||
GTLVQ model that constrains the prototypes to the range [0, 1] by clamping
|
||||
after updates.
|
||||
|
||||
"""
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
with torch.no_grad():
|
||||
self._omega.copy_(orthogonalization(self._omega))
|
@ -1,45 +0,0 @@
|
||||
"""ProtoTorch KNN model."""
|
||||
|
||||
import warnings
|
||||
|
||||
from prototorch.core.competitions import KNNC
|
||||
from prototorch.core.components import LabeledComponents
|
||||
from prototorch.core.initializers import (
|
||||
LiteralCompInitializer,
|
||||
LiteralLabelsInitializer,
|
||||
)
|
||||
from prototorch.utils.utils import parse_data_arg
|
||||
|
||||
from .abstract import SupervisedPrototypeModel
|
||||
|
||||
|
||||
class KNN(SupervisedPrototypeModel):
|
||||
"""K-Nearest-Neighbors classification algorithm."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, skip_proto_layer=True, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("k", 1)
|
||||
|
||||
data = kwargs.get("data", None)
|
||||
if data is None:
|
||||
raise ValueError("KNN requires data, but was not provided!")
|
||||
data, targets = parse_data_arg(data)
|
||||
|
||||
# Layers
|
||||
self.proto_layer = LabeledComponents(
|
||||
distribution=len(data) * [1],
|
||||
components_initializer=LiteralCompInitializer(data),
|
||||
labels_initializer=LiteralLabelsInitializer(targets))
|
||||
self.competition_layer = KNNC(k=self.hparams.k)
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
return 1 # skip training step
|
||||
|
||||
def on_train_batch_start(self, train_batch, batch_idx):
|
||||
warnings.warn("k-NN has no training, skipping!")
|
||||
return -1
|
||||
|
||||
def configure_optimizers(self):
|
||||
return None
|
@ -1,12 +1,12 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from prototorch.y import (
|
||||
from prototorch.models import (
|
||||
SimpleComparisonMixin,
|
||||
SingleLearningRateMixin,
|
||||
SupervisedArchitecture,
|
||||
WTACompetitionMixin,
|
||||
)
|
||||
from prototorch.y.architectures.loss import GLVQLossMixin
|
||||
from prototorch.models.architectures.loss import GLVQLossMixin
|
||||
|
||||
|
||||
class GLVQ(
|
@ -5,7 +5,7 @@ from typing import Callable
|
||||
|
||||
import torch
|
||||
from prototorch.core.distances import omega_distance
|
||||
from prototorch.y import (
|
||||
from prototorch.models import (
|
||||
GLVQLossMixin,
|
||||
MultipleLearningRateMixin,
|
||||
OmegaComparisonMixin,
|
@ -1,138 +0,0 @@
|
||||
"""LVQ models that are optimized using non-gradient methods."""
|
||||
|
||||
import logging
|
||||
from collections import OrderedDict
|
||||
|
||||
from prototorch.core.losses import _get_dp_dm
|
||||
from prototorch.nn.activations import get_activation
|
||||
from prototorch.nn.wrappers import LambdaLayer
|
||||
|
||||
from .glvq import GLVQ
|
||||
from .mixins import NonGradientMixin
|
||||
|
||||
|
||||
class LVQ1(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 1."""
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
|
||||
for xi, yi in zip(x, y):
|
||||
d = self.compute_distances(xi.view(1, -1))
|
||||
preds = self.competition_layer(d, plabels)
|
||||
w = d.argmin(1)
|
||||
if yi == preds:
|
||||
shift = xi - protos[w]
|
||||
else:
|
||||
shift = protos[w] - xi
|
||||
updated_protos = protos + 0.0
|
||||
updated_protos[w] = protos[w] + (self.hparams["lr"] * shift)
|
||||
self.proto_layer.load_state_dict(
|
||||
OrderedDict(_components=updated_protos),
|
||||
strict=False,
|
||||
)
|
||||
|
||||
logging.debug(f"dis={dis}")
|
||||
logging.debug(f"y={y}")
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class LVQ21(NonGradientMixin, GLVQ):
|
||||
"""Learning Vector Quantization 2.1."""
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
# TODO Vectorized implementation
|
||||
|
||||
for xi, yi in zip(x, y):
|
||||
xi = xi.view(1, -1)
|
||||
yi = yi.view(1, )
|
||||
d = self.compute_distances(xi)
|
||||
(_, wp), (_, wn) = _get_dp_dm(d, yi, plabels, with_indices=True)
|
||||
shiftp = xi - protos[wp]
|
||||
shiftn = protos[wn] - xi
|
||||
updated_protos = protos + 0.0
|
||||
updated_protos[wp] = protos[wp] + (self.hparams["lr"] * shiftp)
|
||||
updated_protos[wn] = protos[wn] + (self.hparams["lr"] * shiftn)
|
||||
self.proto_layer.load_state_dict(
|
||||
OrderedDict(_components=updated_protos),
|
||||
strict=False,
|
||||
)
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class MedianLVQ(NonGradientMixin, GLVQ):
|
||||
"""Median LVQ
|
||||
|
||||
# TODO Avoid computing distances over and over
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.transfer_layer = LambdaLayer(
|
||||
get_activation(self.hparams["transfer_fn"]))
|
||||
|
||||
def _f(self, x, y, protos, plabels):
|
||||
d = self.distance_layer(x, protos)
|
||||
dp, dm = _get_dp_dm(d, y, plabels, with_indices=False)
|
||||
mu = (dp - dm) / (dp + dm)
|
||||
negative_mu = -1.0 * mu
|
||||
f = self.transfer_layer(
|
||||
negative_mu,
|
||||
beta=self.hparams["transfer_beta"],
|
||||
) + 1.0
|
||||
return f
|
||||
|
||||
def expectation(self, x, y, protos, plabels):
|
||||
f = self._f(x, y, protos, plabels)
|
||||
gamma = f / f.sum()
|
||||
return gamma
|
||||
|
||||
def lower_bound(self, x, y, protos, plabels, gamma):
|
||||
f = self._f(x, y, protos, plabels)
|
||||
lower_bound = (gamma * f.log()).sum()
|
||||
return lower_bound
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
protos, plabels = self.proto_layer()
|
||||
|
||||
x, y = train_batch
|
||||
dis = self.compute_distances(x)
|
||||
|
||||
for i, _ in enumerate(protos):
|
||||
# Expectation step
|
||||
gamma = self.expectation(x, y, protos, plabels)
|
||||
lower_bound = self.lower_bound(x, y, protos, plabels, gamma)
|
||||
|
||||
# Maximization step
|
||||
_protos = protos + 0
|
||||
for k, xk in enumerate(x):
|
||||
_protos[i] = xk
|
||||
_lower_bound = self.lower_bound(x, y, _protos, plabels, gamma)
|
||||
if _lower_bound > lower_bound:
|
||||
logging.debug(f"Updating prototype {i} to data {k}...")
|
||||
self.proto_layer.load_state_dict(
|
||||
OrderedDict(_components=_protos),
|
||||
strict=False,
|
||||
)
|
||||
break
|
||||
|
||||
# Logging
|
||||
self.log_acc(dis, y, tag="train_acc")
|
||||
|
||||
return None
|
@ -1,35 +0,0 @@
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from prototorch.core.components import Components
|
||||
|
||||
|
||||
class ProtoTorchMixin(pl.LightningModule):
|
||||
"""All mixins are ProtoTorchMixins."""
|
||||
|
||||
|
||||
class NonGradientMixin(ProtoTorchMixin):
|
||||
"""Mixin for custom non-gradient optimization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.automatic_optimization = False
|
||||
|
||||
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ImagePrototypesMixin(ProtoTorchMixin):
|
||||
"""Mixin for models with image prototypes."""
|
||||
proto_layer: Components
|
||||
components: torch.Tensor
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
"""Constrain the components to the range [0, 1] by clamping after updates."""
|
||||
self.proto_layer.components.data.clamp_(0.0, 1.0)
|
||||
|
||||
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
|
||||
from torchvision.utils import make_grid
|
||||
grid = make_grid(self.components, nrow=num_columns)
|
||||
if return_channels_last:
|
||||
grid = grid.permute((1, 2, 0))
|
||||
return grid.cpu()
|
@ -1,131 +0,0 @@
|
||||
"""Probabilistic GLVQ methods"""
|
||||
|
||||
import torch
|
||||
from prototorch.core.losses import nllr_loss, rslvq_loss
|
||||
from prototorch.core.pooling import (
|
||||
stratified_min_pooling,
|
||||
stratified_sum_pooling,
|
||||
)
|
||||
from prototorch.nn.wrappers import LossLayer
|
||||
|
||||
from .extras import GaussianPrior, RankScaledGaussianPrior
|
||||
from .glvq import GLVQ, SiameseGMLVQ
|
||||
|
||||
|
||||
class CELVQ(GLVQ):
|
||||
"""Cross-Entropy Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Loss
|
||||
self.loss = torch.nn.CrossEntropyLoss()
|
||||
|
||||
def shared_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.compute_distances(x) # [None, num_protos]
|
||||
_, plabels = self.proto_layer()
|
||||
winning = stratified_min_pooling(out, plabels) # [None, num_classes]
|
||||
probs = -1.0 * winning
|
||||
batch_loss = self.loss(probs, y.long())
|
||||
loss = batch_loss.sum()
|
||||
return out, loss
|
||||
|
||||
|
||||
class ProbabilisticLVQ(GLVQ):
|
||||
|
||||
def __init__(self, hparams, rejection_confidence=0.0, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
self.rejection_confidence = rejection_confidence
|
||||
self._conditional_distribution = None
|
||||
|
||||
def forward(self, x):
|
||||
distances = self.compute_distances(x)
|
||||
|
||||
conditional = self.conditional_distribution(distances)
|
||||
prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes,
|
||||
device=self.device)
|
||||
posterior = conditional * prior
|
||||
|
||||
plabels = self.proto_layer._labels
|
||||
if isinstance(plabels, torch.LongTensor) or isinstance(
|
||||
plabels, torch.cuda.LongTensor): # type: ignore
|
||||
y_pred = stratified_sum_pooling(posterior, plabels) # type: ignore
|
||||
else:
|
||||
raise ValueError("Labels must be LongTensor.")
|
||||
|
||||
return y_pred
|
||||
|
||||
def predict(self, x):
|
||||
y_pred = self.forward(x)
|
||||
confidence, prediction = torch.max(y_pred, dim=1)
|
||||
prediction[confidence < self.rejection_confidence] = -1
|
||||
return prediction
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
x, y = batch
|
||||
out = self.forward(x)
|
||||
_, plabels = self.proto_layer()
|
||||
batch_loss = self.loss(out, y, plabels)
|
||||
loss = batch_loss.sum()
|
||||
return loss
|
||||
|
||||
def conditional_distribution(self, distances):
|
||||
"""Conditional distribution of distances."""
|
||||
if self._conditional_distribution is None:
|
||||
raise ValueError("Conditional distribution is not set.")
|
||||
return self._conditional_distribution(distances)
|
||||
|
||||
|
||||
class SLVQ(ProbabilisticLVQ):
|
||||
"""Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("variance", 1.0)
|
||||
variance = self.hparams.get("variance")
|
||||
|
||||
self._conditional_distribution = GaussianPrior(variance)
|
||||
self.loss = LossLayer(nllr_loss)
|
||||
|
||||
|
||||
class RSLVQ(ProbabilisticLVQ):
|
||||
"""Robust Soft Learning Vector Quantization."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("variance", 1.0)
|
||||
variance = self.hparams.get("variance")
|
||||
|
||||
self._conditional_distribution = GaussianPrior(variance)
|
||||
self.loss = LossLayer(rslvq_loss)
|
||||
|
||||
|
||||
class PLVQ(ProbabilisticLVQ, SiameseGMLVQ):
|
||||
"""Probabilistic Learning Vector Quantization.
|
||||
|
||||
TODO: Use Backbone LVQ instead
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("lambda", 1.0)
|
||||
lam = self.hparams.get("lambda", 1.0)
|
||||
|
||||
self.conditional_distribution = RankScaledGaussianPrior(lam)
|
||||
self.loss = torch.nn.KLDivLoss()
|
||||
|
||||
# FIXME
|
||||
# def training_step(self, batch, batch_idx, optimizer_idx=None):
|
||||
# x, y = batch
|
||||
# y_pred = self(x)
|
||||
# batch_loss = self.loss(y_pred, y)
|
||||
# loss = batch_loss.sum()
|
||||
# return loss
|
@ -1,155 +0,0 @@
|
||||
"""Unsupervised prototype learning algorithms."""
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from prototorch.core.competitions import wtac
|
||||
from prototorch.core.distances import squared_euclidean_distance
|
||||
from prototorch.core.losses import NeuralGasEnergy
|
||||
|
||||
from .abstract import UnsupervisedPrototypeModel
|
||||
from .callbacks import GNGCallback
|
||||
from .extras import ConnectionTopology
|
||||
from .mixins import NonGradientMixin
|
||||
|
||||
|
||||
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
||||
"""Kohonen Self-Organizing-Map.
|
||||
|
||||
TODO Allow non-2D grids
|
||||
|
||||
"""
|
||||
_grid: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
h, w = hparams.get("shape")
|
||||
# Ignore `num_prototypes`
|
||||
hparams["num_prototypes"] = h * w
|
||||
distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
|
||||
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
||||
|
||||
# Hyperparameters
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("alpha", 0.3)
|
||||
self.hparams.setdefault("sigma", max(h, w) / 2.0)
|
||||
|
||||
# Additional parameters
|
||||
x, y = torch.arange(h), torch.arange(w)
|
||||
grid = torch.stack(torch.meshgrid(x, y, indexing="ij"), dim=-1)
|
||||
self.register_buffer("_grid", grid)
|
||||
self._sigma = self.hparams.sigma
|
||||
self._lr = self.hparams.lr
|
||||
|
||||
def predict_from_distances(self, distances):
|
||||
grid = self._grid.view(-1, 2)
|
||||
wp = wtac(distances, grid)
|
||||
return wp
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
# x = train_batch
|
||||
# TODO Check if the batch has labels
|
||||
x = train_batch[0]
|
||||
d = self.compute_distances(x)
|
||||
wp = self.predict_from_distances(d)
|
||||
grid = self._grid.view(-1, 2)
|
||||
gd = squared_euclidean_distance(wp, grid)
|
||||
nh = torch.exp(-gd / self._sigma**2)
|
||||
protos = self.proto_layer()
|
||||
diff = x.unsqueeze(dim=1) - protos
|
||||
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
||||
updated_protos = protos + delta.sum(dim=0)
|
||||
self.proto_layer.load_state_dict(
|
||||
{"_components": updated_protos},
|
||||
strict=False,
|
||||
)
|
||||
|
||||
def training_epoch_end(self, training_step_outputs):
|
||||
self._sigma = self.hparams.sigma * np.exp(
|
||||
-self.current_epoch / self.trainer.max_epochs)
|
||||
|
||||
def extra_repr(self):
|
||||
return f"(grid): (shape: {tuple(self._grid.shape)})"
|
||||
|
||||
|
||||
class HeskesSOM(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
# TODO Implement me!
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class NeuralGas(UnsupervisedPrototypeModel):
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Hyperparameters
|
||||
self.save_hyperparameters(hparams)
|
||||
|
||||
# Default hparams
|
||||
self.hparams.setdefault("age_limit", 10)
|
||||
self.hparams.setdefault("lm", 1)
|
||||
|
||||
self.energy_layer = NeuralGasEnergy(lm=self.hparams["lm"])
|
||||
self.topology_layer = ConnectionTopology(
|
||||
agelimit=self.hparams["age_limit"],
|
||||
num_prototypes=self.hparams["num_prototypes"],
|
||||
)
|
||||
|
||||
def training_step(self, train_batch, batch_idx):
|
||||
# x = train_batch
|
||||
# TODO Check if the batch has labels
|
||||
x = train_batch[0]
|
||||
d = self.compute_distances(x)
|
||||
loss, _ = self.energy_layer(d)
|
||||
self.topology_layer(d)
|
||||
self.log("loss", loss)
|
||||
return loss
|
||||
|
||||
|
||||
class GrowingNeuralGas(NeuralGas):
|
||||
errors: torch.Tensor
|
||||
|
||||
def __init__(self, hparams, **kwargs):
|
||||
super().__init__(hparams, **kwargs)
|
||||
|
||||
# Defaults
|
||||
self.hparams.setdefault("step_reduction", 0.5)
|
||||
self.hparams.setdefault("insert_reduction", 0.1)
|
||||
self.hparams.setdefault("insert_freq", 10)
|
||||
|
||||
errors = torch.zeros(
|
||||
self.hparams["num_prototypes"],
|
||||
device=self.device,
|
||||
)
|
||||
self.register_buffer("errors", errors)
|
||||
|
||||
def training_step(self, train_batch, _batch_idx):
|
||||
# x = train_batch
|
||||
# TODO Check if the batch has labels
|
||||
x = train_batch[0]
|
||||
d = self.compute_distances(x)
|
||||
loss, order = self.energy_layer(d)
|
||||
winner = order[:, 0]
|
||||
mask = torch.zeros_like(d)
|
||||
mask[torch.arange(len(mask)), winner] = 1.0
|
||||
dp = d * mask
|
||||
|
||||
self.errors += torch.sum(dp * dp)
|
||||
self.errors *= self.hparams["step_reduction"]
|
||||
|
||||
self.topology_layer(d)
|
||||
self.log("loss", loss)
|
||||
return loss
|
||||
|
||||
def configure_callbacks(self):
|
||||
return [
|
||||
GNGCallback(
|
||||
reduction=self.hparams["insert_reduction"],
|
||||
freq=self.hparams["insert_freq"],
|
||||
)
|
||||
]
|
@ -1,6 +1,5 @@
|
||||
"""Visualization Callbacks."""
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from typing import Sized
|
||||
|
||||
@ -33,10 +32,6 @@ class Vis2DAbstract(pl.Callback):
|
||||
tensorboard=False,
|
||||
show_last_only=False,
|
||||
pause_time=0.1,
|
||||
save=False,
|
||||
save_dir="./img",
|
||||
fig_size=(5, 4),
|
||||
dpi=500,
|
||||
block=False):
|
||||
super().__init__()
|
||||
|
||||
@ -80,16 +75,8 @@ class Vis2DAbstract(pl.Callback):
|
||||
self.tensorboard = tensorboard
|
||||
self.show_last_only = show_last_only
|
||||
self.pause_time = pause_time
|
||||
self.save = save
|
||||
self.save_dir = save_dir
|
||||
self.fig_size = fig_size
|
||||
self.dpi = dpi
|
||||
self.block = block
|
||||
|
||||
if save:
|
||||
if not os.path.exists(save_dir):
|
||||
os.makedirs(save_dir)
|
||||
|
||||
def precheck(self, trainer):
|
||||
if self.show_last_only:
|
||||
if trainer.current_epoch != trainer.max_epochs - 1:
|
||||
@ -138,11 +125,6 @@ class Vis2DAbstract(pl.Callback):
|
||||
def log_and_display(self, trainer, pl_module):
|
||||
if self.tensorboard:
|
||||
self.add_to_tensorboard(trainer, pl_module)
|
||||
if self.save:
|
||||
plt.tight_layout()
|
||||
self.fig.set_size_inches(*self.fig_size, forward=False)
|
||||
plt.savefig(f"{self.save_dir}/{trainer.current_epoch}.png",
|
||||
dpi=self.dpi)
|
||||
if self.show:
|
||||
if not self.block:
|
||||
plt.pause(self.pause_time)
|
||||
@ -169,13 +151,13 @@ class VisGLVQ2D(Vis2DAbstract):
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax()
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
if x_train is not None:
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(np.vstack([x_train, protos]),
|
||||
self.border, self.resolution)
|
||||
else:
|
||||
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
_components = pl_module.proto_layer._components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
|
@ -1,23 +0,0 @@
|
||||
from .architectures.base import BaseYArchitecture
|
||||
from .architectures.comparison import (
|
||||
OmegaComparisonMixin,
|
||||
SimpleComparisonMixin,
|
||||
)
|
||||
from .architectures.competition import WTACompetitionMixin
|
||||
from .architectures.components import SupervisedArchitecture
|
||||
from .architectures.loss import GLVQLossMixin
|
||||
from .architectures.optimization import (
|
||||
MultipleLearningRateMixin,
|
||||
SingleLearningRateMixin,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'BaseYArchitecture',
|
||||
"OmegaComparisonMixin",
|
||||
"SimpleComparisonMixin",
|
||||
"SingleLearningRateMixin",
|
||||
"MultipleLearningRateMixin",
|
||||
"SupervisedArchitecture",
|
||||
"WTACompetitionMixin",
|
||||
"GLVQLossMixin",
|
||||
]
|
@ -1,217 +0,0 @@
|
||||
import logging
|
||||
import warnings
|
||||
from typing import Optional, Type
|
||||
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from matplotlib import pyplot as plt
|
||||
from prototorch.models.vis import Vis2DAbstract
|
||||
from prototorch.utils.utils import mesh2d
|
||||
from prototorch.y.architectures.base import BaseYArchitecture, Steps
|
||||
from prototorch.y.library.gmlvq import GMLVQ
|
||||
from pytorch_lightning.loggers import TensorBoardLogger
|
||||
|
||||
DIVERGING_COLOR_MAPS = [
|
||||
'PiYG',
|
||||
'PRGn',
|
||||
'BrBG',
|
||||
'PuOr',
|
||||
'RdGy',
|
||||
'RdBu',
|
||||
'RdYlBu',
|
||||
'RdYlGn',
|
||||
'Spectral',
|
||||
'coolwarm',
|
||||
'bwr',
|
||||
'seismic',
|
||||
]
|
||||
|
||||
|
||||
class LogTorchmetricCallback(pl.Callback):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name,
|
||||
metric: Type[torchmetrics.Metric],
|
||||
step: str = Steps.TRAINING,
|
||||
**metric_kwargs,
|
||||
) -> None:
|
||||
self.name = name
|
||||
self.metric = metric
|
||||
self.metric_kwargs = metric_kwargs
|
||||
self.step = step
|
||||
|
||||
def setup(
|
||||
self,
|
||||
trainer: pl.Trainer,
|
||||
pl_module: BaseYArchitecture,
|
||||
stage: Optional[str] = None,
|
||||
) -> None:
|
||||
pl_module.register_torchmetric(
|
||||
self,
|
||||
self.metric,
|
||||
step=self.step,
|
||||
**self.metric_kwargs,
|
||||
)
|
||||
|
||||
def __call__(self, value, pl_module: BaseYArchitecture):
|
||||
pl_module.log(self.name, value)
|
||||
|
||||
|
||||
class LogConfusionMatrix(LogTorchmetricCallback):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_classes,
|
||||
name="confusion",
|
||||
on='prediction',
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
name,
|
||||
torchmetrics.ConfusionMatrix,
|
||||
on=on,
|
||||
num_classes=num_classes,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def __call__(self, value, pl_module: BaseYArchitecture):
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(value.detach().cpu().numpy())
|
||||
|
||||
# Show all ticks and label them with the respective list entries
|
||||
# ax.set_xticks(np.arange(len(farmers)), labels=farmers)
|
||||
# ax.set_yticks(np.arange(len(vegetables)), labels=vegetables)
|
||||
|
||||
# Rotate the tick labels and set their alignment.
|
||||
plt.setp(
|
||||
ax.get_xticklabels(),
|
||||
rotation=45,
|
||||
ha="right",
|
||||
rotation_mode="anchor",
|
||||
)
|
||||
|
||||
# Loop over data dimensions and create text annotations.
|
||||
for i in range(len(value)):
|
||||
for j in range(len(value)):
|
||||
text = ax.text(
|
||||
j,
|
||||
i,
|
||||
value[i, j].item(),
|
||||
ha="center",
|
||||
va="center",
|
||||
color="w",
|
||||
)
|
||||
|
||||
ax.set_title(self.name)
|
||||
fig.tight_layout()
|
||||
|
||||
pl_module.logger.experiment.add_figure(
|
||||
tag=self.name,
|
||||
figure=fig,
|
||||
close=True,
|
||||
global_step=pl_module.global_step,
|
||||
)
|
||||
|
||||
|
||||
class VisGLVQ2D(Vis2DAbstract):
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
ax = self.setup_ax()
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
if x_train is not None:
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
mesh_input, xx, yy = mesh2d(
|
||||
np.vstack([x_train, protos]),
|
||||
self.border,
|
||||
self.resolution,
|
||||
)
|
||||
else:
|
||||
mesh_input, xx, yy = mesh2d(protos, self.border, self.resolution)
|
||||
_components = pl_module.components_layer.components
|
||||
mesh_input = torch.from_numpy(mesh_input).type_as(_components)
|
||||
y_pred = pl_module.predict(mesh_input)
|
||||
y_pred = y_pred.cpu().reshape(xx.shape)
|
||||
ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35)
|
||||
|
||||
|
||||
class VisGMLVQ2D(Vis2DAbstract):
|
||||
|
||||
def __init__(self, *args, ev_proj=True, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.ev_proj = ev_proj
|
||||
|
||||
def visualize(self, pl_module):
|
||||
protos = pl_module.prototypes
|
||||
plabels = pl_module.prototype_labels
|
||||
x_train, y_train = self.x_train, self.y_train
|
||||
device = pl_module.device
|
||||
omega = pl_module._omega.detach()
|
||||
lam = omega @ omega.T
|
||||
u, _, _ = torch.pca_lowrank(lam, q=2)
|
||||
with torch.no_grad():
|
||||
x_train = torch.Tensor(x_train).to(device)
|
||||
x_train = x_train @ u
|
||||
x_train = x_train.cpu().detach()
|
||||
if self.show_protos:
|
||||
with torch.no_grad():
|
||||
protos = torch.Tensor(protos).to(device)
|
||||
protos = protos @ u
|
||||
protos = protos.cpu().detach()
|
||||
ax = self.setup_ax()
|
||||
self.plot_data(ax, x_train, y_train)
|
||||
if self.show_protos:
|
||||
self.plot_protos(ax, protos, plabels)
|
||||
|
||||
|
||||
class PlotLambdaMatrixToTensorboard(pl.Callback):
|
||||
|
||||
def __init__(self, cmap='seismic') -> None:
|
||||
super().__init__()
|
||||
self.cmap = cmap
|
||||
|
||||
if self.cmap not in DIVERGING_COLOR_MAPS and type(self.cmap) is str:
|
||||
warnings.warn(
|
||||
f"{self.cmap} is not a diverging color map. We recommend to use one of the following: {DIVERGING_COLOR_MAPS}"
|
||||
)
|
||||
|
||||
def on_train_start(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module: GMLVQ):
|
||||
self.plot_lambda(trainer, pl_module)
|
||||
|
||||
def plot_lambda(self, trainer, pl_module: GMLVQ):
|
||||
|
||||
self.fig, self.ax = plt.subplots(1, 1)
|
||||
|
||||
# plot lambda matrix
|
||||
l_matrix = pl_module.lambda_matrix
|
||||
|
||||
# normalize lambda matrix
|
||||
l_matrix = l_matrix / torch.max(torch.abs(l_matrix))
|
||||
|
||||
# plot lambda matrix
|
||||
self.ax.imshow(l_matrix.detach().numpy(), self.cmap, vmin=-1, vmax=1)
|
||||
|
||||
self.fig.colorbar(self.ax.images[-1])
|
||||
|
||||
# add title
|
||||
self.ax.set_title('Lambda Matrix')
|
||||
|
||||
# add to tensorboard
|
||||
if isinstance(trainer.logger, TensorBoardLogger):
|
||||
trainer.logger.experiment.add_figure(
|
||||
f"lambda_matrix",
|
||||
self.fig,
|
||||
trainer.global_step,
|
||||
)
|
||||
else:
|
||||
warnings.warn(
|
||||
f"{self.__class__.__name__} is not compatible with {trainer.logger.__class__.__name__} as logger. Use TensorBoardLogger instead."
|
||||
)
|
@ -1,195 +0,0 @@
|
||||
"""prototorch.models test suite."""
|
||||
|
||||
import prototorch as pt
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
|
||||
def test_glvq_model_build():
|
||||
model = pt.models.GLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_glvq1_model_build():
|
||||
model = pt.models.GLVQ1(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_glvq21_model_build():
|
||||
model = pt.models.GLVQ1(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_gmlvq_model_build():
|
||||
model = pt.models.GMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 2,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_grlvq_model_build():
|
||||
model = pt.models.GRLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_gtlvq_model_build():
|
||||
model = pt.models.GTLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_lgmlvq_model_build():
|
||||
model = pt.models.LGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_image_glvq_model_build():
|
||||
model = pt.models.ImageGLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(16),
|
||||
)
|
||||
|
||||
|
||||
def test_image_gmlvq_model_build():
|
||||
model = pt.models.ImageGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 16,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(16),
|
||||
)
|
||||
|
||||
|
||||
def test_image_gtlvq_model_build():
|
||||
model = pt.models.ImageGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 16,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(16),
|
||||
)
|
||||
|
||||
|
||||
def test_siamese_glvq_model_build():
|
||||
model = pt.models.SiameseGLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(4),
|
||||
)
|
||||
|
||||
|
||||
def test_siamese_gmlvq_model_build():
|
||||
model = pt.models.SiameseGMLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(4),
|
||||
)
|
||||
|
||||
|
||||
def test_siamese_gtlvq_model_build():
|
||||
model = pt.models.SiameseGTLVQ(
|
||||
{
|
||||
"distribution": (3, 2),
|
||||
"input_dim": 4,
|
||||
"latent_dim": 2,
|
||||
},
|
||||
prototypes_initializer=pt.initializers.RNCI(4),
|
||||
)
|
||||
|
||||
|
||||
def test_knn_model_build():
|
||||
train_ds = pt.datasets.Iris(dims=[0, 2])
|
||||
model = pt.models.KNN(dict(k=3), data=train_ds)
|
||||
|
||||
|
||||
def test_lvq1_model_build():
|
||||
model = pt.models.LVQ1(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_lvq21_model_build():
|
||||
model = pt.models.LVQ21(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_median_lvq_model_build():
|
||||
model = pt.models.MedianLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_celvq_model_build():
|
||||
model = pt.models.CELVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_rslvq_model_build():
|
||||
model = pt.models.RSLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_slvq_model_build():
|
||||
model = pt.models.SLVQ(
|
||||
{"distribution": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_growing_neural_gas_model_build():
|
||||
model = pt.models.GrowingNeuralGas(
|
||||
{"num_prototypes": 5},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_kohonen_som_model_build():
|
||||
model = pt.models.KohonenSOM(
|
||||
{"shape": (3, 2)},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
||||
|
||||
|
||||
def test_neural_gas_model_build():
|
||||
model = pt.models.NeuralGas(
|
||||
{"num_prototypes": 5},
|
||||
prototypes_initializer=pt.initializers.RNCI(2),
|
||||
)
|
Loading…
Reference in New Issue
Block a user